Proton Exchange in Water/Mycelium System: Transdisciplinary Out-of-Equilibrium Thermodynamic Approach Using Potentiometric Titration

Abstract

In this study, we used potentiometric titration to investigate the interaction of the saprophytic fungus Trametes villosa in an aqueous environment. The study of this biological complex system allowed us to observe the evolution of out-ofequilibrium hydrogen ion potential states after systematic perturbations. The responses of the complex system to perturbations were interpreted from relations that provided qualitative response patterns for mycelium in agreement with their basic structural and organizational characteristics. We consider this to be a transdisciplinary example of the behavior of general systems with thermodynamic properties of great ecological relevance, being specifically related to the negentropic properties of heterogeneous systems.

Share and Cite:

V. Almeida and B. Szpoganicz, "Proton Exchange in Water/Mycelium System: Transdisciplinary Out-of-Equilibrium Thermodynamic Approach Using Potentiometric Titration," Open Journal of Physical Chemistry, Vol. 3 No. 4, 2013, pp. 189-200. doi: 10.4236/ojpc.2013.34023.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] E. Morin, “Ciência com Consciencia,” 8th Edition, Bertrand Brasil, Rio de Janeiro, 2005.
[2] D. J. Silva, “O Paradigma Transdiciplinar: Uma Perspectiva Metodológica para a Pesquisa Ambiental,” Workshop sobre Interdisciplinaridade, Ministério da Ciencia e Tecnologia, Instituto de Pesquisas Espaciais, Sao José dos Campos, 1999.
[3] H. Maturana and G. Verden-Zoller, “Amor y Juego: Fundamentos Olvidados de lo Humano,” 2nd Edition, Instituto de Terapia Cognitiva, Santiago, 1994.
[4] F. Capra, “O Ponto de Mutacao,” 29th Edition, Cultrix, Sao Paulo, 2010.
[5] C. G. Jung, “Psicologia e Alquimia,” 4th Edition, Vozes, Petrópolis, 1990.
[6] D. Kondepudi and I. Prigogine, “Modern Thermodynamics: From Heat Engines to Dissipative Structures,” John Wiley, Chichester, 1998.
[7] M. J. Carlile and S. C. Watkinson, “The Fungi,” Academic Press, London, 1994.
[8] C. J. Alexopoulos and C. W. Mims, “Introductory Mycology,” 3rd Edition, John Wiley, New York, 1979.
[9] P. Stamets, “Mycelium Running: How Mushroom Can Help to Save The World,” Colorkraft, Hong Kong, 2005.
[10] N. A. R. Gow, G. D. Robson and G. M. Gadd, “The Fungal Colony,” C.U. Press, New York, 1999. http://dx.doi.org/10.1017/CBO9780511549694
[11] G. M. Gadd, “Mycotransformation of Organic and Inorganic Substrates,” Mycologist, Vol. 18, No. 2, 2004, pp. 60-70. http://dx.doi.org/10.1017/S0269915X04002022
[12] Z. Naveh, “Ten Major Premises for a Holistic Conception of Multifunctional Landscapes,” Landscape and Urban Planning, Vol. 57, No. 3-4, 2001, pp. 269-284. http://dx.doi.org/10.1016/S0169-2046 (01)00209-2
[13] R. Ferrera-Cerato and J. Perez Moreno, “Mycorrhizal Interactions with Plants and Soil Organism in Sustainable Agroecosystems,” Soil Ecology in Sustainable Agricultural Systems, CRC/Lewis Publishers, Mexico, 1997.
[14] J. Harris, “Soil Microbial Communities and Restoration Ecology: Facilitators or Followers?” Science, Vol. 325, No. 5940, 2009, pp. 573-574. http://dx.doi.org/10.1126/science.1172975
[15] A. Primavesi, “Manejo Ecológico do Solo: A Agricultura em Regioes Tropicais,” Nobel, Sao Paulo, 2002.
[16] M. Altieri, “Agroecologia: Bases Científicas para Agricultura Alternativa,” 2nd Edition, FASE, Rio de Janeiro, Brasil, 1989.
[17] G. Bateson, “Steps to an Ecology of Mind: Collected Essays in Anthropology, Psychiatry, Evolution and Epistemology,” Jason Aranson, London, 1987.
[18] T. Yamanaka, “The Effect of pH on The Growth of Saprotrophic and Ectomycorrhizal Ammonia Fungi in Vitro,” Mycologia, Vol. 95, No. 4, 2003, pp. 584-589. http://dx.doi.org/10.2307/3761934
[19] J. Rifkin and T. Howard, “Entropy: A New World View,” Viking Press, New York, 1980.
[20] G. Sanna, G. Alberti, P. Castaldi and P. Melis, “Determination of Stability Constants of Metal-Trichoderma viride Complexes by The Potentiometric Titration Method,” Fresenius Environmental Bulletin, Vol. 11, No. 9b, 2002, pp. 636-641.
[21] G. Naja, C. Mustin, B. Volesky and J. Berthelin, “A High-Resolution Titrator: A New Approach to Studying Binding Sites of Microbial Biosorbents,” Water Research, Vol. 39, No. 4, 2005, pp. 579-588. http://dx.doi.org/10.1016/j.watres.2004.11.008
[22] S. Kazakov, E. Bonvouloir and I. Gazaryan, “Physicochemical Characterization of Natural Ionic Microreservoirs: Bacillus subtilis Dormant Spores,” The Journal of Physical Chemistry B, Vol. 112, No. 7, 2008, pp. 2233-2244. http://dx.doi.org/10.1021/jp077188u
[23] L. von Bertalanffy, “Teoria Geral dos Sistemas,” 2nd Edition, Vozes, Brasília, 1975.
[24] A. E. Martell and R. J. Motekaitis, “Determination and Use of Stability Constants,” VHC Publishers, Dallas, 1992.
[25] D. Sanders, “Kinetic Modeling of Plant and Fungal Membrane Transport Systems,” Annual Review of Plant Physiology and Plant Molecular Biology, Vol. 41, No. 1, 1990, pp. 77-107. http://dx.doi.org/ 10.1146/annurev.pp.41.060190.000453
[26] K. Michaelian, “Entropy Production and the Origin of Life,” Journal of Modern Physics, Vol. 2, No. 26, 2011, pp. 595-601. http://dx.doi.org/10.4236/jmp.2011.226069

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.