[1]
|
T. J. Gan, A. Soppitt, M. Maroof, et al., “Goal-Directed Intraoperative Fluid Administration Reduces Length of Hospital Stay after Major Surgery,” Anesthesiology, Vol. 97, No. 4, 2002, pp. 820-826. http://dx.doi.org/10.1097/00000542-200210000-00012
|
[2]
|
A. Donati, S. Loggi, J.-C. Preiser, et al., “Goal-Directed Intraoperative Therapy Reduces Morbidity and Length of Hospital Stay in High-Risk Surgical Patients,” Chest, Vol. 132, No. 6, 2007, pp. 1817-1824. http://dx.doi.org/10.1378/chest.07-0621
|
[3]
|
M. Bundgaard-Nielsen, K. Holte, N. H. Secher and H. Kehlet, “Monitoring of Peri-Operative Fluid Administration by Individualized Goal-Directed Therapy,” Acta Anaesthesiologica Scandinavica, Vol. 51, No. 3, 2007, pp. 331-340. http://dx.doi.org/10.1111/j.1399-6576.2006.01221.x
|
[4]
|
C. S. Hartog, M. Bauer and K. Reinhart, “The Efficacy and Safety of Colloid Resuscitation in the Critically Ill,” Anesthesia & Analgesia, Vol. 112, No. 1, 2011, pp. 156-164. http://dx.doi.org/10.1213/ANE.0b013e3181eaff91
|
[5]
|
C. S. Hartog, M. Kohl and K. Reinhart, “A Systematic Review of Third-Generation Hydroxyethyl Starch (HES130/ 0.4) in Resuscitation: Safety Not Adequately Addressed,” Anesthesia & Analgesia, Vol. 112, No. 3, 2011, pp. 635-645. http://dx.doi.org/10.1213/ANE.0b013e31820ad607
|
[6]
|
D. Chappell, M. Jacob, K. Hofmann-Kiefer, et al., “A Rational Approach to Perioperative Fluid Management,” Anesthesiology, Vol. 109, No. 4, 2008, pp. 723-740. http://dx.doi.org/10.1097/ALN.0b013e3181863117
|
[7]
|
J.-L. Vincent, “Let’s Give Some Fluid and See What Happens” versus the “Mini-Fluid Challenge,” Anesthesiology, Vol. 115, No. 3, 2011, pp. 455-456. http://dx.doi.org/10.1097/ALN.0b013e318229a521
|
[8]
|
M. Cannesson, “Non-Invasive Guidance of Fluid Therapy,” In: R. G. Hahn, Ed., Clinical Fluid Therapy in the Perioperative Setting, Cambridge University Press, Cambridge, 2011, pp. 103-111. http://dx.doi.org/10.1017/CBO9780511733253
|
[9]
|
T. Tatara, Y. Nagao and C. Tashiro, “Effect of Duration of Surgery on Fluid Balance during Abdominal Surgery: A Mathematical Model,” Anesthesia & Analgesia, Vol. 109, No. 1, 2009, pp. 211-216. http://dx.doi.org/10.1213/ane.0b013e3181a3d3dc
|
[10]
|
K. Aukland and R. K. Reed, “Interstitial-Lymphatic Mechanisms in the Control of Extracellular Fluid Volume,” Physiological Reviews, Vol. 73, No. 1, 1993, pp. 1-78.
|
[11]
|
T. Tatara and K. Tsuzaki, “Segmental Bioelectrical Impedance Analysis Improves the Prediction for Extracellular Water Volume Changes during Abdominal Surgery,” Critical Care Medicine, Vol. 26, No. 3, 1998, pp. 470-476. http://dx.doi.org/10.1097/00003246-199803000-00017
|
[12]
|
D. Bracco, J.-P. Revelly, M. M. Berger and R. Chioléro, “Bedside Determination of Fluid Accumulation after Cardiac Surgery Using Segmental Bioelectrical Impedance,” Critical Care Medicine, Vol. 26, No. 6, 1998, pp. 1065-1070. http://dx.doi.org/10.1097/00003246-199806000-00029
|
[13]
|
D. Bracco, M. M. Berger, J.-P. Revelly, et al., “Segmental Bioelectrical Impedance Analysis to Assess Perioperative Fluid Changes,” Critical Care Medicine, Vol. 28, No. 7, 2000, pp. 2390-2396. http://dx.doi.org/10.1097/00003246-200007000-00034
|
[14]
|
A. De Lorenzo, A. Andreoli, J. Matthie and P. Withers, “Predicting Body Cell Mass with Bioimpedance by Using Theoretical Methods: A Technological Review,” Journal of Applied Physiology, Vol. 82, No. 5, 1997, pp. 1542-1558.
|
[15]
|
V. Nisanevich, I. Felsenstein, G. Almogy, et al., “Effect of Intraoperative Fluid Management on Outcome after Intraabdominal Surgery,” Anesthesiology, Vol. 103, No. 1, 2005, pp. 25-32. http://dx.doi.org/10.1097/00000542-200507000-00008
|
[16]
|
J. Renner, J. Scholz and B. Bein, “Monitoring Fluid Therapy,” Best Practice & Research Clinical Anaesthesiology, Vol. 23, No. 2, 2009, pp. 159-171. http://dx.doi.org/10.1016/j.bpa.2008.12.001
|
[17]
|
D. Lahner, B. Kabon, C. Marschalek, et al., “Evaluation of Stroke Volume Variation Obtained by Arterial Pulse Contour Analysis to Predict Fluid Responsiveness Intraoperatively,” British Journal of Anaesthesia, Vol. 103, No. 3, 2009, pp. 346-351. http://dx.doi.org/10.1093/bja/aep200
|
[18]
|
T. E. Miller and T. J. Gan, “Goal-Directed Fluid Therapy,” In: R. G. Hahn, Ed., Clinical Fluid Therapy in the Perioperative Setting, Cambridge University Press, Cambridge, 2011, pp. 91-102. http://dx.doi.org/10.1017/CBO9780511733253.012
|
[19]
|
J. Persson and P.-O. Grände, “Plasma Volume Expansion and Transcapillary Fluid Exchange in Skeletal Muscle of Albumin, Dextran, Gelatin, Hydroxyethyl Starch, and Saline after Trauma in the Cat,” Critical Care Medicine, Vol. 34, No. 9, 2006, pp. 2456-2462. http://dx.doi.org/10.1097/01.CCM.0000233876.87978.AB
|
[20]
|
J. C. Fantone and P. A. Ward, “Inflammation,” In: E. Rubin and J. L. Farber, Eds., Pathology, Lippincott-Raven Publishers, Philadelphia, 1999, pp. 37-75.
|
[21]
|
B. T. Tedner, H. S. Jacobson, D. Linnarsson and L. E. Lins, “Impedance Fluid Volume Monitoring during Intravenous Infusion in Healthy Subjects,” Acute Care, Vol. 10, No. 3-4, 1983, pp. 200-206.
|
[22]
|
C. G. Olthof, J. P. P. M. de Vries, P. M. J. M. de Vries, et al., “The Influence of Ringer’s Lactate and Gelatin Infusion on the Internal Fluid Balance of Healthy Volunteers Measured by a Non-Invasive Conductivity Technique,” European Journal of Anaesthesiology, Vol. 10, No. 6, 1993, pp. 397-402.
|
[23]
|
G. Biancofiore, L. A. H. Critchley, A. Lee, et al., “Evaluation of a New Software Version of the Flotrac/Vigileo (Version 3.02) and a Comparison with Previous Data in Cirrhotic Patients Undergoing Liver Transplant Surgery,” Anesthesia & Analgesia, Vol. 113, No. 3, 2011, pp. 515-522.
|
[24]
|
L. Meng, N. P. Tran, B. S. Alexander, et al., “The Impact of Phenylephrine, Ephedrine, and Increased Preload on Third-Generation Vigileo-FloTrac and Esophageal Doppler Cardiac Output Measurements,” Anesthesia & Analgesia, Vol. 113, No. 4, 2011, pp. 751-757.
|