Calcineurin overexpression regulates APP metabolism


Alzheimer’s disease (AD) is a complex neurodegenerative disease, pathologically characterized by the accumulation of β-amyloid peptide (Aβ) and intraneuronal neurofibrillary tangles. Production of the Aβpeptide by the regulated intra-membrane proteolysis of the β-amyloid precursor protein (APP) is a central event in AD.Cognitive decline observed in AD models is dependent on Aβgeneration. One of the downstream effects mediated by soluble Aβoligomersincludes the hyperactivation of calcineurin (CaN), a Ca2+and calmodulin (CaM)-dependent, serinethreonine protein phosphatase. CaN is one of the major phosphatase associated with cognitive and neurodegenerative effects of Aβ. A specific isoform of CaN, CaNAβ, is one of the most up-regulated mRNAs in brains of early stage AD patients. While Aβ’s ability to activate CaN has been well studied, not much is known about how increased levels of CaN in AD brain can contribute towards Aβgeneration. In this study we specifically investigate if increased levels of CaNAβ regulate APP metabolism. Our results demonstrate that increased CaNAβ expressionleads to increased APP levels and increased proteolytic products of APP, including Aβ. The data suggest that upregulation of CaN levels could contribute to neurodegeneration observed in AD by increasing levels ofAβ, potentially forming a pathogenic feed forward loop.

Share and Cite:

Utreja, S. , J. Miller, S. and Saunders, A. (2013) Calcineurin overexpression regulates APP metabolism. Advances in Alzheimer's Disease, 2, 109-116. doi: 10.4236/aad.2013.23014.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Tanzi, R.E. and Bertram, L. (2005) Twenty years of the Alzheimer’s disease amyloid hypothesis: A genetic perspective. Cell, 120, 545-555. doi:10.1016/j.cell.2005.02.008
[2] Selkoe, D.J. (2003) Aging, amyloid, and Alzheimer’s disease: A perspective in honor of CarlCotman. Neurochemical Research, 28, 1705-1713. doi:10.1023/A:1026065122854
[3] Shoji, M., et al. (1992) Production of the Alzheimer amyloid beta protein by normal-proteolytic processing. Science, 258, 126-129. doi:10.1126/science.1439760
[4] De Strooper, B. and Annaert, W. (2000) Proteolytic processing and cell biological functions of theamyloid precursor protein. Journal of Cell Science, 113, 1857-1870.
[5] Kuchibhotla, K.V. et al. (2008) Abeta plaques lead to aberrant regulation of calcium homeostasis in vivo resulting in structural and functional disruption of neuronal networks. Neuron, 59, 214-225. doi:10.1016/j.neuron.2008.06.008
[6] Wu, H.Y., et al. (2010) Amyloid beta induces the morphological neurodegenerative triad of spine loss, dendritic simplification, and neuritic dystrophies through calcineurin activation. The Journal of Neuroscience, 30, 2636-2649. doi:10.1523/JNEUROSCI.4456-09.2010
[7] Loo, D.T., et al. (1993) Apoptosis is induced by beta-amyloid in cultured central nervous system neurons. Proceedings of the National Academy of Sciences of the United States of America, 90, 7951-7955. doi:10.1073/pnas.90.17.7951
[8] Reese, L.C., Zhang, W., Dineley, K.T., Kayed, R. and Taglialatela, G. (2008) Selective induction of calcineurin activity and signaling by oligomeric amyloid beta. Aging Cell, 7, 824-835. doi:10.1111/j.1474-9726.2008.00434.x
[9] Agostinho, P., Lopes, J.P., Velez, Z. and Oliveira, C.R., (2008) Overactivation of calcineurin induced by amyloid-beta and prion proteins. Neurochemistry International, 52, 1226-1233. doi:10.1016/j.neuint.2008.01.005
[10] Abdul, H.M., et al. (2009) Cognitive decline in Alzheimer’s disease is associated with selective changes in calcineurin/NFAT signaling. The Journal of Neuroscience, 29, 12957-12969. doi:10.1523/JNEUROSCI.1064-09.2009
[11] Rusnak, F. and Mertz, P. (2000) Calcineurin: Form and function. Physiological Reviews, 80, 1483-1521
[12] Klee, C.B., Crouch, T.H. and Krinks, M.H. (1979) Calcineurin: A calcium-and calmodulin-binding protein of the nervous system. Proceedings of the National Academy of Sciences of the United States of America, 76, 6270-6273. doi:10.1073/pnas.76.12.6270
[13] Klee, C.B., Ren, H. and Wang, X. (1998) Regulation of the calmodulin-stimulated protein phosphatase, calcineurin. The Journal of Biological Chemistry, 273, 13367-13370. doi:10.1074/jbc.273.22.13367
[14] Perrino, B.A., Ng, L.Y. and Soderling, T. R. (1995) Calcium regulation of calcineurin phosphatase activity by its B subunit and calmodulin. Role of the autoinhibitory domain. The Journal of Biological Chemistry, 270, 7012.
[15] Wu, H.Y., et al. (2004) Critical role of calpain-mediated cleavage of calcineurin inexcitotoxic neuro-degeneration. The Journal of Biological Chemistry, 279, 4929-4940. doi:10.1074/jbc.M309767200
[16] Mohmmad Abdul, H., Baig, I., Levine H., Guttmann, R.P. and Norris, C.M. (2011) Proteolysis of calcineurin is increased in human hippocampus during mild cognitive impairment and is stimulated by oligomeric Abeta in primary cell culture. Aging Cell, 10, 103-113. doi:10.1111/j.1474-9726.2010.00645.x
[17] Shibasaki, F., Hallin, U. and Uchino, H. (2002) Calcineurin as a multifunctional regulator. The Journal of Biochemistry, 131, 1-15. doi:10.1093/oxfordjournals.jbchem.a003063
[18] Klee, C.B., Draetta, G.F. and Hubbard, M.J. (1988) Calcineurin. Advances in Enzymology and Related Areas of Molecular Biology, 61, 149-200.
[19] Yakel, J.L. (1997) Calcineurin regulation of synaptic function: From ion channels to transmitter release and gene transcription. Trends in Pharmacological Sciences, 18, 124-134. doi:10.1016/S0165-614(97)01046-8
[20] Hata, R., et al. (2001) Up-regulation of calcineurin Abeta mRNA in the Alzheimer’s disease brain: Assessment by cDNA microarray. Biochemical and Biophysical Research Communications, 284, 310-316. doi:10.1006/bbrc.2001.4968
[21] Taguchi, K., et al. (2005) Identification of hippocampus-related candidate genes for Alzheimer’s disease. Annals of Neurology, 57, 585-588. doi:10.1002/ana.20433
[22] Wei, Q., Holzer, M., Brueckner, M. K., Liu, Y. and Arendt, T. (2005) Dephosphorylation of tau protein by calcineurin triturated into neural living cells. Cellular and Molecular Neurobiology, 22, 13-24.
[23] Zhang, C., et al. (2007) An AICD-based functional screen to identify APP metabolism regulators. Molecular Neurodegeneration, 2, 15. doi:10.1186/1750-1326-2-15
[24] Zuchner, S., et al. (2008) Linkage and association study of lateons et al zheimer disease families linked to 9p21.3. Annals of Human Genetics, 72, 725-731. doi:10.1111/j.1469-1809.2008.00474.x
[25] Bito, H., Deis-seroth, K. and Tsien, R.W. (1996) CREB phosphorylation and dephosphorylation: A Ca(2+)-and stimulus duration-dependent switch for hippocampal gene expression. Cell, 87, 1203-1214. doi:10.1016/S0092-8674(00)81816-4
[26] Abdul, H.M., et al. (2009) Cognitive decline in Alzheimer’s disease is associated with selective changes in calcineurin/NFAT signaling. The Journal of Neuroscience, 29, 12957-12969. doi:10.1523/JNEUROSCI.1064-09.2009
[27] Foster, T.C., Sharrow, K.M., Masse, J.R., Norris, C.M. and Kumar, A. (2001) Calcineurin links Ca2+ dysregulation with brain aging. The Journal of Neuroscience, 21, 4066-4073.
[28] Mulkey, R.M., Endo, S., Shenolikar, S. and Malenka, R.C. (1994) Involvement of acalcineurin/inhibitor-1 phosphatase cascade in hippocampal long-term depression. Nature, 369, 486-488. doi:10.1038/369486a0
[29] Kim, Y., et al. (2009) Calcineurin dephosphorylates gly- cogen synthase kinase-3 beta atserine-9 in neuroblast-derived cells. Journal of Neurochemistry, 111, 344-354. doi:10.1111/j.1471-4159.2009.06318.x
[30] Wang, H.G., et al. (1999) Ca2+-induced apoptosis through calcineurin dephosphorylation of BAD. Science, 284, 339- 343. doi:10.1126/science.284.5412.339
[31] Asai, A., et al. (1999) High level calcineurin activity predisposes neuronal cells to apoptosis. The Journal of Biological Chemistry, 274, 34450-34458. doi:10.1074/jbc.274.48.34450
[32] Kayyali, U.S., Zhang, W., Yee, A.G., Seidman, J.G. and Potter, H. (1999) Cytoskeletal changes in the brains of mice lacking calcineurin A alpha. Journal of Neurochemistry, 68, 1668-1678 (1997). doi:10.1046/j.1471-4159.1997.68041668.x
[33] Malleret, G., et al. (2001) Inducible and reversible enhancement of learning, memory, andlong-term potentialtion by genetic inhibition of calcineurin. Cell, 104, 675- 686.
[34] Zeng, H., et al. (2001) Forebrain-specific calcineurin knockout selectively impairs bidirectional synaptic plasticity and working/episodic-like memory. Cell, 107, 617- 629. doi:10.1016/S0092-8674(01)00585-2
[35] Dineley, K.T., Hogan, D., Zhang, W.R. and Taglialatela, G. (2007) Acute inhibition of calcineurin restores associative learning and memory in Tg2576 APP transgenic mice. Neurobiology of Learning and Memory, 88, 217-224. doi:10.1016/j.nlm.2007.03.010
[36] Agostinho, P. and Oliveira, C.R. (2003) Involvement of calcineurin in the neurotoxic effects induced by amyloid-beta and prion peptides. European Journal of Neuroscience, 17, 1189-1196. doi:10.1046/j.1460-9568.2003.02546.x
[37] Ladner, C.J., Czech, J., Maurice, J., Lorens, S.A. and Lee, J.M. (1996) Reduction of calcineurin enzymatic activity in Alzheimer’s disease: Correlation with neuropathologic changes. Journal of Neuropathology & Experimental Neurology, 55, 924-931.
[38] Karch, C.M., Jeng, A.T. and Goate, A.M. (2013) Calcium phosphatase calcineurin influences tau metabolism. Neurobiology of Aging, 34, 374-386. doi:10.1016/j.neurobiolaging.2012.05.003

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.