Carbon utilization profile of a thermophilic fungus, Thermomyces lanuginosus using phenotypic microarray


The thermophilic filamentous fungus, Thermomyces lanuginosus produces the largest amount of xylanase reported. In addition to this, it expresses large amount of other enzymes that have been used industrially or have academic interest. Thus, this fungus has a potential to be applied for biomass conversion to produce biofuel or other applications. In this study, the Biolog system was used to characterize the utilisation and growth of T. lanuginosus on 95 carbon sources. The carbohydrates based compounds, both single sugars and oligosaccharide, showed the best utilisation profile, with the pentose sugar xylose inducing the highest growth, followed by trehelose, raffinose, D-mannose turanose fructose and glucose. Among oligosaccharides, sucrose had the highest mycelium formation followed by stachyose, maltose, maltotriose, glycogen and dextrin. Interestingly the fungus also grew well on cellobiose suggesting that this fungus can produce cellulose hydrolysing proteins. D-alanine was the best amino acid to promote fungal growth while the effect of other amino acids tested was similar to the control. These results demonstrate the ability of this fungus to grow relatively well on most plant based compounds thus making this fungus a possible candidate for plant biomass conversion which can be applied to a number of biotechnological applications including biofuel production.

Share and Cite:

Mchunu, N. , Permaul, K. , Alam, M. and Singh, S. (2013) Carbon utilization profile of a thermophilic fungus, Thermomyces lanuginosus using phenotypic microarray. Advances in Bioscience and Biotechnology, 4, 24-32. doi: 10.4236/abb.2013.49A004.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Ghorai, S., Banik, P., Verma, D., Chowdhury, S., Mukherjee, S. and Khowala, S. (2009) Fungal biotechnology in food and feed processing. Food Research International, 42, 577-587. doi:10.1016/j.foodres.2009.02.019
[2] Singh, S., Madlala, A.M. and Prior, B.A. (2003) Thermomyces lanuginosus: Properties of strains and their hemicellulases. FEMS Microbiology Reviews, 27, 3-16.
[3] Nitsche, B.M., Crabtree, J., Cerqueira, G.C., Meyer, V., Ram, A.F.J. and Wortman, J.R. (2011) New resources for functional analysis of omics data for the genus aspergillus. BMC Genomics, 12, 486.
[4] Murat, C., Riccioni, C., Belfiori, B., Cichocki, N., Labba, J., Morin, E., Tisserant, E., Paolocci, F., Rubini, A. and Martin, F. (2012) Distribution and localization of microsatellites in the perigord black truffle genome and identification of new molecular markers. Fungal Genetics and Biology, 48, 592-601. doi:10.1016/j.fgb.2010.10.007
[5] Druzhinina, I., S. , Schmoll, M., Seiboth, B. and Kubicek, C., P. (2005) Global carbon utilization profiles of wildtype, mutant, transformant strains of Hypocrea jecorina. Applied and Environmantal Microbiology, 72, 2126-2133.
[6] Singh, M.P. (2009) Application of biolog ff microplate for substrate utilization and metabolite profiling of closely related fungi. Journal of Microbiological Methods, 77, 102-108. doi:10.1016/j.mimet.2009.01.014
[7] Maheshwari, R., Bharadwaj, G. and Mahakingesgwara, K.B. (2000) Thermophilic fungi: Their physiology and enzymes. Microbiology and Molecular Biology Reviews, 64, 461-488. doi:10.1128/MMBR.64.3.461-488.2000
[8] Tang, J.-C. and Katayama, A. (2005) Relating quinone profile to the aerobic biodegradation in thermophilic composting processes of cattle manure with various bulking agents. World Journal of Microbiology and Biotechnology, 21, 1249-1254.
[9] Yu, H., Zeng, G., Huang, H., Xi, X., Wang, R., Huang, D., Huang, G. and Li, J. (2007) Microbial community succession and lignocellulose degradation during agricultural waste composting. Biodegradation, 18, 793-802.
[10] Puchart, V., Katapodis, P. and Biely, P. (1999) Production of xylanases, mannanases and pectinases by the themophilic Fungus Thermomyces lanuginosus. Enzyme Microbial Technology, 24, 355-361.
[11] Dodd, D., Mackie, R., I and Cann, I., K.O. (2011) Xylan degradation, a metabolic property shared by rumen and human colonic bacteroidetes. Molecular Microbiology, 79, 292-304. doi:10.1111/j.1365-2958.2010.07473.x
[12] Kuttanpillai, S.K., Ayyachamy, M., Kugen, P. and Suren, S. (2009) Production of β-xylanase by a Thermomyces lanuginosus mc 134 mutant on corn cobs and its application in biobleaching of bagasse pulp. Journal of Bioscience and Bioengineering, 107, 494-498. doi:10.1016/j.jbiosc.2008.12.020
[13] Singh, S., Reddy, P., Haarhoff, J., Biely, P., Janse, B., Pillay, B., Pillay, D. and Prior, B.A. (2000) Relatedness of Thermomyces lanuginosus strains producing a thermostable xylanase. Journal of Biotechnology, 81, 119-128.
[14] Manimaran, A., Kuttan-Pillai, S.K., Permaul, K. and Singh, S. (2009) Hyper production of cellulase-free xylanase by Thermomyces lanuginosus ssbp on bagasse pulp and its application in biobleaching. Applied Microbiology and Biotechnology, 81, 887-893.
[15] Purkarthofer, H., Sinner, M. and Steiner, W. (1993) Cellulase-free xylanase from Thermomyces lanuginosus: Optimization of production in submerged and solid-state culture. Enzyme and Microbial Technology, 15, 677-682.
[16] Martinez, D., Cullen, D., Danchin, E.G.J., Grigoriev, I.V., Harris, P., Jackson, M., Kubicek, C.P., Han, C.S., Ho, I., Larrondo, L.F., de Leon, A.L., Berka, R.M., Magnuson, J.K., Merino, S., Misra, M., Nelson, B., Putnam, N., Robbertse, B., Salamov, A.A., Schmoll, M., Terry, A., Thayer, N., Henrissat, B., Westerholm-Parvinen, A., Schoch, C.L., Yao, J., Barabote, R., Barbote, R., Nelson, M.A., Detter, C., Bruce, D., Kuske, C.R., Xie, G., Saloheimo, M., Richardson, P., Rokhsar, D.S., Lucas, S.M., Rubin, E.M., Dunn-Coleman, N., Ward, M., Brettin, T.S., Arvas, M., Baker, S.E., Chapman, J., Chertkov, O. and Coutinho, P.M. (2008) Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nature Biotechnology, 26, 553-560. doi:10.1038/nbt1403
[17] Zhao, Z., Liu, H., Wang, C. and Xu, J.-R. (2013) Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi. BMC Genomics, 14, 274. doi:10.1186/1471-2164-14-274
[18] Ferreira, A.S., Tótola, M.R. and Borges, A.C. (2007) Physiological implications of trehalose in the ectomycorrhizal fungus pisolithus sp. Under thermal stress. Journal of Thermal Biology, 32, 34-41. doi:10.1016/j.jtherbio.2006.08.009
[19] Hartl, L., Zach, S. and Seidl-Seiboth, V. (2012) Fungal chitinases: Diversity, mechanistic properties and biotechnological potential. Applied Microbiology and Biotechnology, 93, 533-543. doi:10.1007/s00253-011-3723-3
[20] Bechem, E.E.T. (2012) Utilisation of organic and inorganic nitrogen sources by Scleroderma sinnamariense mont. Isolated from Gnetum africanum welw. African Journal of Biotechnology, 11, 9205-9213.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.