[1]
|
V. M. Petrusevski, “The H-Atom and the Golden Ratio: A Possible Link,” Journal of Chemical Education, Vol. 83, No. 1, 2006, p. 40.
|
[2]
|
V. M. Petrusevski, “The First Excited State of the Hydrogen Atom and the Golden Ratio: A Link or a Mere Coincidence?” Bulletin of the Chemists and Technologists of Macedonia, Vol. 25, No. 1, 2006, pp. 61-63.
|
[3]
|
C. L. Devito and W. A. Little, “Fractal Sets Associated with Function: The Spectral Lines of Hydrogen,” Physical Review A, Vol. 38, No. 12, 1988, pp. 6362-6364.
doi:10.1103/PhysRevA.38.6362
|
[4]
|
A. C. Phillips, “Introduction to Quantum Mechanics,” John Wiley & Sons Ltd., Chichester, 2003.
|
[5]
|
M. S. El Naschie, “Quantum Entanglement as a Consequence of a Cantorian Micro Spacetime Geometry,” Journal of Quantum Information Science, Vol. 1, No. 2, 2011, pp. 50-53. doi:10.4236/jqis.2011.12007
|
[6]
|
J.-H. He, et al., “Quantum Golden Mean Entanglement Test as the Signature of the Fractality of Micro Spacetime,” Nonlinear Science Letters B, Vol. 1, No. 2, 2011, pp. 45-50.
|
[7]
|
L. Hardy, “Nonlocality of Two Particles without Inequalities for Almost All Entangled States,” Physical Review Letters, Vol. 71, No. 11, 1993, pp. 1665-1668.
doi:10.1103/PhysRevLett.71.1665
|
[8]
|
M. S. El Naschie, “A Review of E-Infinity Theory and the Mass Spectrum of High Energy Particle Physics,” Chaos, Solitons & Fractals, Vol. 19, No. 1, 2004, pp. 209-236. doi:10.1016/S0960-0779(03)00278-9
|
[9]
|
M. S. El Naschie, “The Theory of Cantorian Spacetime and High Energy Particle Physics (An Informal Review),” Chaos, Solitons & Fractals, Vol. 41, No. 5, 2009, pp. 2635-2646. doi:10.1016/j.chaos.2008.09.059
|
[10]
|
R. Penrose, “The Road to Reality,” Jonathan Cape, London, 2004.
|
[11]
|
R. Mauldin and S. Williams, “Random Recursive Constructions: Asymptotic Geometries and Topological Properties,” Transactions of the American Mathematical Society, Vol. 295, No.1. 1986, pp. 325-346.
doi:10.1090/S0002-9947-1986-0831202-5
|
[12]
|
R. Mauldin, “On the Hausdorff Dimension of Graphs and Recursive Object,” In: G. Mayer-Kress, Ed., Dimension and Entropies in Chaotic Systems, Springer, Berlin, 1986, pp. 28-33.
|
[13]
|
L. Marek-Crnjac, “The Hausdorff Dimension of the Penrose Universe,” Physics Research International, Vol. 2011, 2011, pp. 1-4.
|
[14]
|
A. Connes, “Noncommutative Geometry,” Academic Press, San Diego, 1994.
|
[15]
|
M. Gardener, “Penrose Tiles to Trapdoor Ciphers,” W.H. Freeman, New York, 1989.
|
[16]
|
L. Amendola and S. Tsujikawa, “Dark Energy: Theory and Observations,” Cambridge University Press, Cambridge, 2010.
|
[17]
|
L. Marek-Crnjac, et al., “Chaotic Fractals at the Root of Relativistic Quantum Physics and Cosmology,” International Journal of Modern Nonlinear Theory and Application, Vol. 2, No. 1A, 2013, pp. 78-88.
doi:10.4236/ijmnta.2013.21A010
|
[18]
|
M. S. El Naschie, “A Resolution of Cosmic Dark Energy via a Quantum Entanglement Relativity Theory,” Journal of Quantum Information Science, Vol. 3, No. 1, 2013, pp. 23-26. doi:10.4236/jqis.2013.31006
|
[19]
|
M. S. El Naschie, “Topological-Geometrical and Physical Interpretation of the Dark Energy of the Cosmos as a ‘Halo’ Energy of the Schrodinger Quantum Wave,” Journal of Modern Physics, Vol. 4, No. 5, 2013, pp. 591-596.
doi:10.4236/jmp.2013.45084
|
[20]
|
S. Brandt and H. Dahmen, “The Picture Book of Quantum Mechanics,” Springer, New York, 1995, pp. 237-238.
|