2-A Cosmological Model with Varying G and ∧ in General Relativity

Abstract

Spatially homogeneous and anisotropic Cosmological models play a significant role in the description of the early stages of evolution of the universe. The problem of the cosmological constant is still unsettled. The authors recently considered time dependent G and L with Bianchi type–I Cosmological model .We considered in this paper homogeneous Bianchi type -I space-time with variable G and L containing matter in the form of a perfect fluid assuming the cosmological term proportional to R-2 (where R is scale factor). Initially the model has a point type singularity, gravitational constant G (t) is decreasing and cosmological constant L is infinite at this time. When time increases L decreases. Unlike in some earlier works we have neither assumed equation of state nor particular form of G. The model does not approach isotropy, if ‘t’ is small .The model is quasi-isotropic for large value of ‘t’.

Share and Cite:

H.  , R. Tiwari and H. Sahota, "2-A Cosmological Model with Varying G and ∧ in General Relativity," Open Journal of Applied Sciences, Vol. 3 No. 1B, 2013, pp. 74-78. doi: 10.4236/ojapps.2013.31B1015.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] B. Saha, “Anisotropic Cosmological Models with a Perfect Fluid and a Term,” Astrophysics and Space Science , Vol. 302, No. 1-4, 2006a, pp. 83-91.
[2] B. Saha, “Anisotropic Cosmological Models with a Perfect Fluid and Dark Energy Reexamined,” International Journal of Theoretical Physics, Vol. 45, No. 5, 2006b, pp. 952-964.
[3] B. Saha, “Bianchi Type I Universe With Viscous Fluid,” Modern Physics Letters A, Vol. 20, No. 28, 2005, p. 2127. doi:10.1142/S021773230501830X
[4] B. Saha, “Anisotropic Cosmological Models with Perfect Fluid and Dark Energy,”Chinese, 2005.
[5] R. G. Vishwakarma, “A Model to Explain Varying, G and σ2 Simultaneously,” General Relativity and Gravitation, Vol. 37, No. 7, 2005, pp. 1305-1311. doi:10.1007/s10714-005-0113-0
[6] S. Carneiro and J. A. S. Lima, “Time Dependent Cosmological Term and Holography,” Modern International Journal of Physics A, Vol. 20, No. 11, 2005, p. 2465. doi:10.1142/S0217751X0502478X
[7] J. V. Cunha, R. C. Santos, “The Existence Of An Old Quasar At Z = 3.91 And Its Implications For Λ(T) Deflationary Cosmologies Read,” Modern International Journal of Physics D, Vol. 13, No. 7, 2004, p. 1321. doi.org/10.1142/S0218271804005481
[8] A. G. Riess, et al., Astronomical Journal, pp. 607- 665.
[9] S. W. Allen, et al., “Probing Dark Energy with Constellation-X,” Monthly Notices of the Royal Astronomical Society, Vol. 353, No. 2, 2004, pp. 457-467. doi:10.1111/j.1365-2966.2004.08080.x
[10] J. A. S. Lima “Alternative Dark Energy Models: An Overview,” Brazilian Journal of Physics, Vol. 34, No. 1a, 2004, pp. 194-200. doi:10.1590/S0103-97332004000200009
[11] T. Padmanabhan, “Cosmological Constant the Weight of the Vacuum,” Physics Report, Vol. 380, No. 5-6, 2003, pp. 235-320. doi:10.1016/S0370-1573(03)00120-0
[12] P. J. E. Peebles and B. Ratra, “The Cosmological Constant and Dark Energy,” Reviews of Modern Physics, Vol. 75, No. 2, 2003, pp. 559-606. doi:10.1103/RevModPhys.75.559
[13] R. G. Vishwakarma, “Study of the Magnitude-Redshift Relation for Type Ia Supernovae in a Model Resulting from a Ricci-Symmetry,” General Relativivity and Gravity, Vol. 33, 2001, p. 1973.
[14] R. A. Vishwakarma, “A Study of Angular Size-redshift Relation for Models in Which ∧ Decays as the Energy Density,” Class Quantum Gravity, Vol. 17, 2000, pp. 38-33. doi:10.1088/0264-9381/17/18/317
[15] S. Perlmutter, et al., “Measurements of Ω and Λ from 42 High-Redshift Supernovae,” Astrophysical Journal, 1999, pp. 517- 565.
[16] I. Arbab, “Bianchi Type I Universe with Variable G and Λ,” General Relativity and Gravitation, Vol. 30, No. 9,1998, pp. 1401-1405. doi:0.1023/A:1018856625508
[17] S. Perlmutter, et al., “Discovery of a Supernova Explosion at Half the Age of the Universe,” Nature, Vol. 391, 1998.
[18] A. G. Riess, et al., “Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant,” the Astronphysical Journal, Vol. 116 , 1998, p. 1009.
[19] S. Perlmutter, et al., “Measurements of the Cosmological Parameters Ω and Λ from the First Seven Supernovae at z ≥ 0.35,” the Astrophysical Journal, Vol. 483, No. 2,1997, p. 565.doi:10.1086/304265.
[20] V. Silveira and J. Waga, “Cosmological Properties of a Class of ∧ Decaying Cosmologies,” Physical Review D, Vol. 56, 1997, p. 4625.
[21] J. A. S. Lima and M. Trodden, “Decaying Vacuum Energy and Deflationary Cosmology in Open and Closed Universes,” Physical Review D, Vol. 53, No. 8, 1996, pp. 4280-4286. DOI: 10.1103/PHYSREVD.53.4280)
[22] J. A. S. Lima, “Thermodynamics of Decaying Vacuum Cosmologies,” Physical Review D, Vol. 54, p. 2571.
[23] L. F. B. Torres and I. Waga, “Decaying Lambda Cosmologies and Statistical Properties of Gravitational Lenses,” Monthly Noices of the Royal Astronomical Society, Vol. 279, 1996, pp. 712-726. doi: 10.1093/mnras/279.3.712
[24] D. Kalligas, P. S. Wesson and C. W. F. Everitt, “Bianchi Type I Cosmological Models with VariableG and Λ: A Comment, General Relativity and Gravitivity, Vol. 27, 1995, pp. 645-650. doi:10.1007/BF02108066
[25] A. I. Arbab and A. M. M. Abdel-Rahaman, “Nonsingular Cosmology with a Time-dependent Cosmological Term,” Physical Review D, Vol. 50, 1994, pp. 7725-7728. doi:10.1103/PhysRevD.50.7725
[26] A. Beesham, General Relativity and Gravitivity, Vol. 26 1599.
[27] J. A. S. Lima and J. M. F. Maia, Physical Review D, Vol. 49, 1994, p. 5579.
[28] J. A. S.Lima and J. C. Carvalho, “Dirac's Cosmology with Varying Cosmological Constant,” General Relativity and Gravitivity, Vol. 26, 1994, pp. 909-916. doi10.1007/BF02107147
[29] M. D. Maia and G. S. Silva, “Geometrical Constraints on the Cosmological Constant,” Physical Review D, Vol. 50 , 1994, pp. 7233-7238. doi:10.1103/PhysRevD.50.7233
[30] V. Silveira and J. Waga, “Decaying Λ Cosmologies and Power Spectrum,” Physical Review D, Vol. 50, 1994, pp. 4890-4894. doi:10.1103/PhysRevD.50.4890
[31] J. C. Carvalho, J. A. S. Lima and I. Waga, “Cosmological Consequences of a Time-dependent Term,” Physical Review D, Vol. 46, No. 6, 1992, pp. 2404-2407. doi:10.1103/PhysRevD.46.2404
[32] M. S. Berman, “Cosmological Models with Variable Gravitational and Cosmological Constants,” General Relativity and Gravitation, Vol. 23, 1991a, pp. 465-469. doi:10.1007/BF00756609
[33] M. S. Berman, “Cosmological Models with VariableCosmological Term,” Physical Review D, Vol. 43, 1991b, pp. 1075-1078.
[34] D. Pavon, “Nonequilibrium Fluctions in Cosmic Vacuum Decay,” Physical Review D, Vol. 43, 1991, pp. 375-378. doi:10.1103/PhysRevD.43.375
[35] A. M. M. Abdel-Rahaman, “A Critical Density Cosmological Model with Varying Gravitation and Cosmological Constants,” General Relativity and Gravitation, Vol. 22, No. 6, 1990, pp. 655-663. doi:10.1007/BF00755985
[36] M. Berman, “Static Universe in a Modified Brans- dicke Cosmology,” International Journal of Theoretical Physics, Vol. 29, 1990, pp. 567-570. doi:10.1007/BF00672031
[37] M. S. Berman and M. M. Som, “Brans-Dicke Models with Time-dependent Cosmological Term,” International Journal of Theory Physics, Vol. 29, 1990, pp. 1411-1414. doi:10.1007/BF00674120
[38] W. Chen and Y. S. Wu, “Implication of a Cosmological Constant Varying as R-2 ,” Physical Review D, Vol. 41, 1990, p. 695.
[39] E. A. Milne, “Relativity, Gravitation and World structure,” Oxford University Press, Oxford, 1935.
[40] M. S. Berman, M. M. Som and F. M. Gomide, “Brans-Dicke Static Universes,” General Relativity and Gravitation, Vol. 21, 1989, pp. 287-292. doi:10.1007/BF00764101
[41] S. Weinberg, “The Cosmo-logical Constant Problem,” Review Modern Physics, Vol. 61, 1989, pp. 1-23. doi:10.1103/RevModPhys.61.1
[42] T. S. Olson and T. F. Jordan, “Ages of the Universe for Decreasing Cosmological Constants,” Physical Review D, Vol. 35, 1987, pp. 3258-3260. doi:10.1103/PhysRevD.35.3258
[43] O. Bertolami Brans-Dicke, “Cosmology with a Scalar Field Dependent Cosmological Term,” Fortsch Physics, Vol. 34, 1986b, p. 829.
[44] O. Bertolami, “Time-dependence Cosmological Term,” Nuovo Cimento B, Vol. 93, 1986a, pp. 36-42. doi:10.1007/BF02728301
[45] T. L. Chow, “The Variability of the Gravitational Constant,” Nuovo Cimento Lettere, Vol. 31, 1981, pp. 119-120. doi:10.1007/BF02822409
[46] L. S. Levitt, “The Gravitational Constraint at Time Zero,” Nuovo Cimento,Lettere, Serie 2, Vol. 29 , 1980, p. 23.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.