[1]
|
Kitano, H. (2002) Systems biology: A brief overview. Science, 295, 1662-1664. doi:10.1126/science.1069492
|
[2]
|
Palsson, B.Q. (2006) Systems biology: properties of re constructed networks. Cambridge University Press, New York. doi:10.1017/CBO9780511790515
|
[3]
|
Alon, U. (2007) An introduction to systems biology: De sign principles of biological circuits. Chapman & Hall/ CRC, Boca Raton.
|
[4]
|
Voit, E.O. (2000) Computational analysis of biochemical systems: A practical guide for biochemists and molecular biologists. Cambridge University Press, New York.
|
[5]
|
Karlebach, G. and Shamir, R. (2008) Modelling and analysis of gene regulatory networks. Nature Reviews Molecular Cell Biology, 9, 770-780. doi:10.1038/nrm2503
|
[6]
|
El-Samad, H. and Khammash, M. (2010) Modelling and analysis of gene regulatory network using feedback control theory. International Journal of Systems Science, 41, 17-33. doi:10.1080/00207720903144545
|
[7]
|
McAdams, H.H. and Arkin, A. (1997) Stochastic mechanisms in gene expression. Proceedings of the National Academy of Sciences of the United States of America, 94, 814-819. doi:10.1073/pnas.94.3.814
|
[8]
|
Elowitz, M.B., Levine, A.J., Siggia, E.D. and Swain, P.S. (2002) Stochasticity gene expression in a single cell. Science, 297, 1183-1186. doi:10.1126/science.1070919
|
[9]
|
Paulsson, J. (2004) Summing up the noise in gene net works. Nature, 427, 415-418. doi:10.1038/nature02257
|
[10]
|
Wang, Z., Liu, X., Liu, Y., Liang, J. and Vinciotti, V. (2009) An extended Kalman filtering approach to modeling nonlinear dynamic gene regulatory networks via short gene expression time series. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 6, 410-419.
doi:10.1109/TCBB.2009.5
|
[11]
|
Chen, B.S., Wang, Y.C., Wu, W.S. and Li, W.H. (2005) A new measure of the robustness of biochemical net works. Bioinformatics, 21, 2698-2705.
doi:10.1093/bioinformatics/bti348
|
[12]
|
Lin, C.L., Lui, Y.W. and Chuang, C.H. (2009) Control design for signal transduction networks. Bioinformatics and Biology Insights, 3, 1-14.
|
[13]
|
Chen, B.S. and Wu, W.S. (2008) Robust filtering circuit design for stochastic gene networks under intrinsic and extrinsic molecular noises. Mathematical Biosciences, 211, 342-355. doi:10.1016/j.mbs.2007.11.002
|
[14]
|
Gelb, A. (1974) Applied optimal estimation. The MIT Press, Cambridge.
|
[15]
|
Reif, K., Gunther, S., Yaz, E. and Unbehauen, R. (2000) Stochastic stability of the continuous-time extended Kalman filter. IEE Proceedings Control Theory and Applications, 147, 45-52. doi:10.1049/ip-cta:20000125
|
[16]
|
Liang, J. and Lam, J. (2010) Robust state estimation for stochastic genetic regulatory networks. International Journal of Systems Science, 41, 47-63.
doi:10.1080/00207720903141434
|
[17]
|
Lillacci, G. and Valigi, P. (18-21 May 2008) State estimation for a model of gene expression. Proceedings of IEEE International Symposium on Circuits and Systems, Seattle, 2046-2049.
|
[18]
|
Cacace, F., Germani, A. and Palumbo, P. (2012) The state observer as a tool for the estimation of gene expression. Journal of Mathematical Analysis and Applications, 391, 382-396. doi:10.1016/j.jmaa.2012.02.026
|
[19]
|
Su, W.W., Liu, B., Lu, W.B., Xu, N.S., Du, G.C. and Tan, J.L. (2005) Observer-based online compensation of inner filter effect in monitoring fluorescence of GFP-expressing plant cell cultures. Biotechnology and Bioengineering, 91, 213-226. doi:10.1002/bit.20510
|
[20]
|
Chuang, C.H. and Lin, C.L. (2010) On robust state estimation of gene networks. Biomedical Engineering and Computational Biology, 2, 23-36.
|
[21]
|
Choukroun, D. (16-18 December 2009) Ito stochastic modeling for attitude quaternion filtering. Proceedings of IEEE Conference on Decision and Control, Shanghai, 733-738.
|
[22]
|
Gardiner, C.W. (1980) Handbook of stochastic methods of differential equations. Sijthoff and Noordhoff, Alphen aan den Rijn.
|
[23]
|
Chen, B.S. and Wu, C.H. (2009) A systematic design method for robust synthetic biology to satisfy design specifications. BMC Systems Biology, 3, 1-18.
doi:10.1186/1752-0509-3-66
|
[24]
|
Poor, V. and Looze, D.P. (1981) Minimax state estimation for linear stochastic systems with noise uncertainty. IEEE Transactions on Automatic Control, 26, 902-906.
doi:10.1109/TAC.1981.1102756
|
[25]
|
Bartle, S. (2000) Introduction to real analysis. 3rd ed. John Wiley & Sons, New York.
|