[1]
|
Ueshima, K., Oba, K., Yasuno, S., Fujimoto, A., Tanaka, S., Ogihara, T., Saruta, T. and Nakao, K. (2011) Influence of coronary risk factors on coronary events in japanese high-risk hypertensive patients. Primary and secondary prevention of ischemic heart disease in a subanalysis of the candesartan antihypertensive survival evaluation in Japan (CASE-J) trial. Circulation Journal, 75, 2411- 2416. doi:10.1253/circj.CJ-10-1161
|
[2]
|
Steven, M. and Haffner, M.D. (2006) Risk constellations in patients with the metabolic syndrome: Epidemiology, diagnosis, and treatment patterns. The American Journal of Medicine, 119, S3-S9.
doi:10.1016/j.amjmed.2006.01.008
|
[3]
|
Steven, M. and Haffner, MD. (2006) Relationship of metabolic risk factors and development of cardiovascular disease and diabetes. Obesity, 14, 121S-127S.
doi:10.1038/oby.2006.291
|
[4]
|
Yokoyama, I., Inoue, Y., Moritan, T., Ohtomo, K. and Nagai, R. (2003) Simple quantification of skeletal muscle glucose utilization by static 18F-FDG PET. Journal of Nuclear Medicine, 44, 1592-1598.
doi:10.1097/00006231-200501000-00006
|
[5]
|
Yokoyama, I., Inoue, Y., Moritan, T., Ohtomo, K. and Nagai, R. (2005) Measurement of skeletal muscle glucose utilization by dynamic 18F-FDG PET without arteial blood sampling. Nuclear Medicine Communications, 26, 31-37.
|
[6]
|
Ohtake, T., Kosaka, N., Watanabe, T., Yo-koyama, I., Moritan, T., Masuo, M., Iizuka, M., Kozeni, K., Momose, T., Oku, S., Nishikawa, J., Sasaki, Y. and Iio, M. (1991) Noninvasive method to obtain input function for measuring tissue glucose utilization of thoracic and abdominal organs. Journal of Nuclear Medicine, 32, 1432-1438.
|
[7]
|
Voipio-Pulkki, L.M., Nuutila, P., Knuuti, M.J., Ruotsalainen, U., Haaparanta, M., Ter?s, M., Wegelius, U. and Koivisto, V.A. (1993) Heart and skeletal muscle glucose disposal in type 2 diabetic patients as determined by positron emission tomography. Journal of Nuclear Medicine, 34, 2064-2067.
|
[8]
|
Yokoyama, I., Yonekura, K., Ohtake, T., Kawamura, H., Matsumoto, A., Inoue, Y., Aoyagi, T., Sugiura, S., Omata, M., Ohtomo, K. and Nagai, R. (2000) Effect of insulin resistance on Heart and skeletal muscle FDG uptake in type II diabetics. Journal of Nuclear Cardiology, 7, 242-248. doi:10.1016/S1071-3581(00)70013-4
|
[9]
|
Nuutila, P., M?ki, M., Laine, H., Knuuti, M.J., Ruotsalainen, U., Lu-otolahti, M., Haaparanta, M., Solin, O., Jula, A., Koivisto, V.A., et al. (1995) Insulin action on heart and skeletal muscle glucose uptake in essential hypertension. Journal of Clinical Investigation, 96, 1003- 1009. doi:10.1172/JCI118085
|
[10]
|
Yokoyama, I., Ohtake, T., Momomura, S., Yonekura, K., Kobayakawa, N., Aoyagi, T., Sugiura, S., Yamada, N., Ohtomo, K., Sasaki, Y., Omata, M. and Yazaki, Y. (1999) Insulin action on Heart and skeletal muscle FDG uptake in patients with hyper-triglyceridemia. Journal of Nuclear Medicine, 40, 1116-1121.
|
[11]
|
Yokoyama, I., Moritan, T. and Inoue, Y. (2012) Functional imaging of skeletal muscle glucose metabolism by 18FDG PET to characterize insulin resistance in patients at high risk for coronary artery dis-ease. Journal of Biomedical Science and Engineering, 5, 819-825.
doi:10.4236/jbise.2012.512A103
|
[12]
|
Yokoyama, I., Yonekura, K., Moritan, T., Tateno, M., Momose, T., Oh-tomo, K., Inoue, Y. and Nagai, R. (2001) Troglitazone can improve impaired femoral muscle glucose utilization in type II diabetics with or without hypertension. Journal of Nuclear Medicine, 42, 1005-1010.
|
[13]
|
Peltoniemi, P., Yki-J?rvinen, H., Oikonen, V., Oksanen, A., Takala, T.O., R?nnemaa, T., Erkinjuntti, M., Knuuti, M.J. and Nuutila, P. (2001) Resistance to exercise-induced increase in glucose uptake during hyperinsulinemia in insulin-resistant skeletal muscle of patients with type 1 diabetes. Diabetes, 50, 1371-1377.
doi:10.2337/diabetes.50.6.1371
|
[14]
|
Nuutila, P., Koivisto, V.A., Knuuti, J., Ruotsalainen, U., Ter?s, M., Haaparanta, M., Bergman, J., Solin, O., Voipio- Pulkki, L.M., Wegelius, U., et al. (1992) Glucose-free fatty acid cycle operates in human heart and skeletal muscle in vivo. Journal of Clinical Investigation, 89, 1757-1744. doi:10.1172/JCI115780
|
[15]
|
Paternostro, G., Camici, P.G., Lammerstma, A.A., Marinho, N., Baliga, R.R., Kooner, J.S., Radda, G.K. and Ferrannini, E. (1996) Cardiac and skeletal muscle insulin resistance in patients with coronary heart disease a study with positron emission tomography. Journal of Clinical Investigation, 98, 2094-2099. doi:10.1172/JCI119015
|
[16]
|
Iozzo, P., Cha-reonthaitawee, P., Dutka, D., Betteridge, D.J., Ferrannini, E. and Camici, P.G. (2002) Independent association of type 2 diabetes and coronary artery disease with myocardial insulin resistance. Diabetes, 51, 3020-3024. doi:10.2337/diabetes.51.10.3020
|
[17]
|
Monti, L.D., Lan-doni, C., Setola, E., Galluccio, E., Lu- cotti, P., Sandoli, E.P., Origgi, A., Lucignani, G., Piatti, P. and Fazio, F. (2004) Myocardial insulin resistance associated with chronic hypertriglyceridemia and increased FFA levels in type 2 diabtic patients. American Journal of Physiolo-gy—Heart and Circulatory Physiology, 287, H1225-H1231. doi:10.1152/ajpheart.00629.2003
|
[18]
|
Yokoyama, I., Ohtake, T., Momomura, S., Yonekura, K., Yamada, N., Nishikawa, J., Sasaki, Y. and Omata, M. (1998) Organ specific insulin resistance in patients with non-insulin dependent diabetes mellitus and hypertension. Journal of Nuclear Medicine, 39, 884-889.
|
[19]
|
Utriainen, T., Takala, T., Luotolahti, M., R?nnemaa, T., Laine, H., Ruotsalainen, U., Haaparanta, M., Nuutila, P. and Yki-J?rvinen, H. (1998) Insulin resistance characterizes glucose uptake in skeletal muscle but not in the heart in NIDDM. Diabetologia, 41, 555-559.
doi:10.1007/s001250050946
|
[20]
|
Yokoyama, I., Inoue, Y., Moritan, T., Ohtomo, K. and Nagai, R. (2006) Myocardial glucose utilization in type II diabetes mellitus patients treated with sulphonylurea drugs. European Journal of Nuclear Medicine and Molecular, 33, 703-708. doi:10.1007/s00259-005-0042-x
|
[21]
|
Nuutila, P., Knuuti, J., Ruotsalainen, U., Koivisto, V.A., Eronen, E., Ter?s, M., Bergman, J., Haaparanta, M., Voipio-Pulkki, L.M., Viikari, J. et al. (1993) Insulin resistance is localized to skeletal but not heart muscle in type 1 diabetes. American Journal of Physiology, 264, E756-E762.
|
[22]
|
Lautamaki, R., Airaksinen, K.E., Seppanen, M., Toikka, J., Luotolahti, M., Ball, E., Borra, R., Harkonen, R., Iozzo, P., Stewart, M., Knuuti, J. and Nuutila, P. (2005) Rosiglitazone improves myocardial glucose uptake in patients with type 2 diabetes and coronary artery disease a 16-week randomized, double-blind, placebo-controlled study. Diabetes, 54, 2787-2794.
doi:10.2337/diabetes.54.9.2787
|
[23]
|
Naoumova, R.P., Kindler, H., Leccisotti, L., Mongillo, M., Khan, M.T., Neuwirth, C., Seed, M., Holvoet, P., Betteridge, J. and Camici, P.G. (2007) Pioglitazone improves myocardial blood flow and glucose utilization in nondiabetic patients with combined hyperlipidemia. A randomized, double-blind, placebo-controlled study. Journal of the American College of Cardiology, 50, 2051- 2058. doi:10.1016/j.jacc.2007.07.070
|
[24]
|
Yokoyama, I., Moritan, T. and Inoue, Y. (2012) Heart and skeletal muscle insulin resistance but not myocardial blood flow reserve could be related to chronic use of thiazolidione in type-2 diabetics. Journal of Biomedical Science and Engineering, 5, 829-835.
doi:10.4236/jbise.2012.512A105
|
[25]
|
Yokoyama, I., Inoue, Y. and Moritan, T. (2012) Recovery of coronary microangiopathy in patients with type 2 diabetes. Journal of Hypo & Hyperglycemia, in press.
|
[26]
|
Yokoyama, I., Ohtake, T., Momomura, S., Yonekura, K., Woo-Soo, S., Nishikawa, J., Sasaki, Y. and Omata, M. (1998) Hyper-glycemia rather than insulin resistance is related to coronary flow reserve in patients with non-insulin dependent diabetes mellitus. Diabetes, 47, 119-124.
doi:10.2337/diabetes.47.1.119
|