Influence of Humidity on Yield Stress Determination by Slump Test of Slip-Prone Clayey Soils and Their Relation with the Chemical Properties


In this work, the yield stress evaluation as a function of water content for slip-prone clayey soils is studied in order to understand how yield stress decreases as water content increases, and their relation with the chemical properties. The clayey soil samples were taken from the region of Teziutlán-Puebla-Mexico. Yield stress was calculated using the slump test in cylindrical geometry. Results show three zones. The first one shows an exponential decrement on yield stress due to lower water content in accord with clayey soils with high content of illita, followed by a second region where yield stress decreases dramatically at a certain critical water concentration, and the third one where yield stress dependence is not well-defined since the clayey soil flow is seen. Finally, it is discussed how yield stress variation due to the water increment influences the landslide risk increment.


Share and Cite:

A. Méndez-Sánchez, A. Paniagua-Mercado, K. Nieto-Zepeda, L. Pérez-Trejo, E. Valdés and C. Mejía García, "Influence of Humidity on Yield Stress Determination by Slump Test of Slip-Prone Clayey Soils and Their Relation with the Chemical Properties," Advances in Materials Physics and Chemistry, Vol. 2 No. 4B, 2012, pp. 102-105. doi: 10.4236/ampc.2012.24B028.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] C. Chien-Yuan, C. Tien-Chen, C. Y. Fan-Chieh, Y. Wen-Hui, T. Chun-Chieh, “Rainfall duration and debris-flow initiated studies for real-time monitoring,” Environment Geology, vol. 47, p.p. 715–724, 2005.
[2] K. S. Sultanov, B. E. Khusanov, “State equations for soils prone to slump-type settlement with allowance for degree of wetting,” Soil Mechanics and Foundations Engineering, vol. 38, No. 3, p.p. 80-86, 2001.
[3] I.A. Caldi?o-Villagómez, I. Bonola-Alonso, G. Salgado-Maldonado, “Estudio experimental del esfuerzo de cedencia con relación al flujo de lodos y debris,” Asociación Internacional de Ingeniería e Investigaciones Hidro-Ambientales vol. 8, [Memorias del XXII Congreso Latinoamericano de Hidráulica, Guayana, Venezuela].
[4] D. F. Van Dine, R. F. Rodman, P. Jordan, J. Dupas, “Kuskonook Creek, an example of a debris flow analysis,” Lanslides vol. 2, p.p. 257-265, 2005.
[5] R. M. Iverson, “The physics of debris flows,” Reviews of Geophysics, vol. 35, No. 3, p.p. 245–296, 1997.
[6] R. P .Denlinger, R. M. Iverson, “Flow of variably fluidized granular masses across three-dimensional terrain 2. Numerical predictions and experimental tests,” Journal of Geophysical Research, vol. 106, No. b1, p.p. 553–566, 2001.
[7] P. Flores Lorenzo, I. Alcántara Ayala, “Cartografía morfogenética e identificación de procesos de ladera en Teziutlán, Puebla,” Investigaciones geográficas Boletín, vol. 49, p.p. 7-26, 2002.
[8] N. Pashias, J. Boger, D.V. Summers, D. J. Glenister, “A fifty cent rheometer for yield stress measurement,” Journal of Rheology, vol. 40, No. 6, p.p. 1179-1189, 1996.
[9] P. Sánchez Crúz, “Análisis del esfuerzo de cedencia de suelos arcillosos como posible indicador de un derrumbe,” Bachelor Thesis, ESFM, Instituto Politécnico Nacional, Mexico, 2008.
[10] A. F. Méndez-Sánchez, L. Pérez-Trejo, A. M. Paniagua Mercado, “Determinación del esfuerzo de cedencia para suelos vulnerables a deslizamientos originados por lluvias,” Boletín de la Sociedad Geológica Mexicana, vol. 63,No 2, p.p. 345-352, 2011.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.