Quantum Teleportation with an Accelerated Partner in Open System


We investigate the teleportation between two relatively accelerating partners undergoing the phase flip, bit flip and bit-phase flip channels. We find that: 1) the fidelity decreases by increasing the acceleration of accelerated observer; 2) the dynamic evolution of the fidelity is different for various channels if the acceleration is fixed; and 3) the fidelity is always symmetric about β2=1/2 where βis a parameter of the transmission state.

Share and Cite:

M. Xiang and J. Jing, "Quantum Teleportation with an Accelerated Partner in Open System," Journal of Quantum Information Science, Vol. 2 No. 4, 2012, pp. 103-111. doi: 10.4236/jqis.2012.24016.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] A. Einstein, B. Podolsky and N. Rosen, “Can Quantum- Mechanical Description of Physical Reality Be Considered Complete?”Physical Review, Vol. 47, No.10, 1935, p. 777. doi:10.1103/PhysRev.47.777
[2] R. Horodecki, P. Horodecki, M. Horodecki and K. Horodecki, “Quantum Entanglement,” Reviews of Modern Physics, Vol. 81, No. 2, 2009, p. 865. doi:10.1103/RevModPhys.81.865
[3] C. H. Bennett, G. Brassard, C. Crpeau, R. Jozsa, A. Peres and W. K. Wootters, “Teleporting an Unknown Quantum State via Dual Classical and Einstein-Podolsky-Rosen Channels,” Physical Review Letters, Vol. 70, No. 13, 1993, p. 1895. doi:10.1103/PhysRevLett.70.1895
[4] Y. Yeo and W. K. Chua, “Teleportation and Dense Coding with Genuine Multipartite Entanglement,” Physical Review Letters, Vol. 96, No. 6, 2006, Article ID: 060502. doi:10.1103/PhysRevLett.96.060502
[5] G. Gordon and G. Rigolin, “Generalized Teleportation Protocol,” Physical Review A, Vol. 73, No. 4, 2006, Article ID: 042309. doi:10.1103/PhysRevA.73.042309
[6] L. Mista and R. Filip, “Optimal Partial Deterministic Quantum Teleportation of Qubits,” Physical Review A, Vol. 71, No. 4, 2005, Article ID: 022319.
[7] M. Fujii, “Continuous-Variable Quantum Teleportation with a Conventional Laser,” Physical Review A, Vol. 68, No. 5, 2003, Article ID: 050302. doi:10.1103/PhysRevA.68.050302
[8] D. Bouwmeester, J. Pan, K. Mattle, M. Eibl, H. Weinfurter and A. Zeilinger, “Experimental Quantum Teleportation,” Nature, Vol. 390, No. 6660, 1997, pp. 575-579. doi:10.1038/37539
[9] P. M. Alsing, “Teleportation in a Non-Inertial Frame,” Journal of Optics B: Quantum and Semiclassical Optics, Vol. 6, No. 8, 2004, p. S834. doi:10.1088/1464-4266/6/8/033
[10] P. M. Alsing and G. J. Milburn, “Teleportation with a Uniformly Accelerated Partner,” Physical Review Letters, Vol. 91, No. 18, 2003, Article ID: 180404. doi:10.1103/PhysRevLett.91.180404
[11] M. R. Hwang, D. Park and E. Jung, “Tripartite Entanglement in a Noninertial Frame,” Physical Review A, Vol. 83, No. 1, 2001, Article ID: 012111.
[12] B. L. Hu, A. Roura and S. Shresta, “Vacuum Fluctuations and Moving Atoms/Detectors: From the Casimir? Polder to the Unruh? Davies? DeWitt? Fulling Effect,” Journal of Optics B: Quantum and Semiclassical Optics, Vol. 6, No. 8, 2004, p. S698. doi:10.1088/1464-4266/6/8/011
[13] Q. Pan and J. Jing, “Degradation of Nonmaximal Entanglement of Scalar and Dirac Fields in Noninertial Frames,” Physical Review A, Vol. 77, No. 2, 2008, Article ID: 024302. doi:10.1103/PhysRevA.77.024302
[14] M. Montero, E. Martin-Martinez, “The Entangling Side of the Unruh-Hawking Effect,” Journal of High Energy Physics, Vol. 2011, No. 7, 2011, p. 6.
[15] J. Wang, J. Deng and J. Jing, “Classical Correlation and Quantum Discord Sharing of Dirac Fields in Noninertial Frames,” Physical Review A, Vol. 81, No. 5, 2010, Article ID: 052120. doi:10.1103/PhysRevA.81.052120
[16] J. Wang and J. Jing, “Multipartite Entanglement of Fermionic Systems in Noninertial Frames,” Physical Review A, Vol. 83, No. 2, 2011, Article ID: 022314. doi:10.1103/PhysRevA.83.022314
[17] X. H. Ge and Y. G. Shen, “Teleportation in the Background of Schwarzschild Space? Time,” Physics Letters B, Vol. 606, No.1-2, 2005, p. 184. doi:10.1016/j.physletb.2004.11.067
[18] X. H. Ge and S. P. Kim, Class. “Quantum Entanglement and Teleportation in Higher Dimensional Black Hole Spacetimes,” Classical and Quantum Gravity, Vol. 25, No. 7, 2008, Article ID: 075011. doi:10.1088/0264-9381/25/7/075011
[19] X. H. Ge and Y. G. Shen, “Quantum Teleportation with Sonic Black Holes,” Physics Letters B, Vol. 623, No. 1-2, 2005, p. 141. doi:10.1016/j.physletb.2005.07.036
[20] Q. Pan and J. Jing, “Hawking Radiation, Entanglement, and Teleportation in the Background of an Asymptotically Flat Static Black Hole,” Physical Review D, Vol. 78, No. 6, 2008, Article ID: 065015. doi:10.1103/PhysRevD.78.065015
[21] B. N. Esfahani, M. Shamirzai and M. Soltani, “Reduction of Entanglement Degradation in Einstein-Gauss-Bonnet gravity,” Physical Review D, Vol. 84, No. 2, 2011, Article ID: 025024.
[22] D. Giulini, E. Joos, C. Kiefer, J. Kupsch, I. O. Stamatescu and H. D. Zeh, “Decoherence and the Appearence of a Classical World in Quantum Teory,” Springer, Berlin, 1996, pp. 44-107.
[23] M. A. Schlosshauer, “Decoherence and the Quantum-to-Classical Transition,” Springer, Berlin, 2007.
[24] M. Brune, E. Hagley, J. Dreyer, X. Maitre, A. Maali, C. Wunderlich, J. M. Raimond and S. Haroche, “Observing the Progressive Decoherence of the Meter in a Quantum Measurement,” Physical Review Letters, Vol. 77, No. 24, 1996, p. 4887. doi:10.1103/PhysRevLett.77.4887
[25] C. J. Myatt, B. E. King, Q. A. Turchette, C. A. Sackett, D. Kiepinski, W. M. Itano, C. Monroc and D. J. Wineland, “Decoherence of Quantum Superpositions through Coupling to Engineered Reservoirs,” Nature, Vol. 403, No. 6767, 2000, p. 269. doi:10.1038/35002001
[26] M. Aspachs, G. Adesso and I. Fuentes, “Optimal Quantum Estimation of the Unruh-Hawking Effect,” Physical Review Letters, Vol. 105, No. 15, 2010, Article ID: 151301. doi:10.1103/PhysRevLett.105.151301
[27] E. Martin-Martinez, L. J. Garay and J. Leon, “Unveiling Quantum Entanglement Degradation near a Schwarzschild Black Hole,” Physical Review D, Vol. 82, No. 6, 2010, Article ID: 064006.
[28] E. Martin-Martinez, L. J. Garay and J. Leon, “Quantum Entanglement Produced in the Formation of a Black Hole,” Physical Review D, Vol. 82, No.6, 2010, Article ID: 064028. doi:10.1103/PhysRevD.82.064028
[29] J. Wang and J. Jing, “System-Environment Dynamics of X-Type States in Noninertial Frames,” Annals of Physics, Vol. 327, No. 2, 2012, p. 283. doi:10.1016/j.aop.2011.10.002
[30] A. Salles, F. de Melo, M. P. Almeida, M. Hor-Meyll, S. P. Walborn, P. H. Souto Ribeiro and L. Davidovich, “Experimental Investigation of the Dynamics of Entanglement: Sudden Death, Complementarity, and Continuous Monitoring of the Environment,” Physical Review A, Vol. 78, No. 2, 2008, Article ID: 022322. doi:10.1103/PhysRevA.78.022322
[31] J. Maziero, L. C. Celeri, R. M. Serra and V. Vedral, “Classical and Quantum Correlations under Decoherence,” Physical Review A, Vol. 80, No. 4, 2009, Article ID: 044102. doi:10.1103/PhysRevA.80.044102
[32] M. A. Nielsen and I. L. Chuang, “Quantum Computation and Quantum Information,” Cambridge University Press, Cambridge, 2000, pp. 425-427.
[33] J. Maziero, T. Werlang, F. Fanchini, L. C. Celeri and R. M. Serra, “System-Reservoir Dynamics of Quantum and Classical Correlations,” Physical Review A, Vol. 81, No. 2, 2010, Article ID: 022116. doi:10.1103/PhysRevA.81.022116

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.