The effect of sand-blasting and hydrofluoric acid etching on Ti CP2 and Ti CP4 surface topography


Titanium is widely used in biomedical applications from many years for its interesting properties, nevertheless there are a large number of researchers studying the way to improve the performances of biomedical devices. A large number of papers concern the study of “commercially pure titanium” (Ti CP) but, very often, no details are indicated regarding: 1) the type of Ti CP used; 2) the sandblasting process; and 3) the analytic evaluation of surface topography. In this paper, the effect of sandblasting duration (1, 2, 4, 8 min) and hydrofluoric acid (HF) etching, as well as their combined or synergic effect, on the surface topography of CP grade 2 and grade 4, have been investigated. Results obtained show that sandblasting treatment duration should be different for Ti CP grade 2 and Ti CP grade 4 to achieve similar topography. The shape of the surface is highly modified after acid etching. The latter produces “peaks” when applied to not sand- blasted coupons, whilst cuts the “top of the peaks” in the sandblasted samples. Further we confirm that, the roughness parameter Ra (or Sa), is not sufficient to describe “the surface status” and we propose to use additional para- meters like: Sq, Sku and Ssk, to unequivocally describe surface topography of implants as well as well defined test procedures.

Share and Cite:

Monetta, T. and Bellucci, F. (2012) The effect of sand-blasting and hydrofluoric acid etching on Ti CP2 and Ti CP4 surface topography. Open Journal of Regenerative Medicine, 1, 41-50. doi: 10.4236/ojrm.2012.13007.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Monetta, T. and Bellucci, F. Electrochemical characteriza- tion of Ti CP 2 and Ti CP 4. Electrochimica Acta, in press.
[2] Liu, X., Chub, P.K. and Ding, C. (2004) Surface modifi- cation of titanium, titanium alloys, and related materials for biomedical applications. Materials Science and Engi- neering, R47, 49-121. doi:10.1016/j.mser.2004.11.001
[3] Brunette, D.M., Tengvall, P., Textor, M. and Thomsen, P., (2001) Titanium in medicine. Springer, Berlin, Heidel- berg. doi:10.1007/978-3-642-56486-4
[4] Ellingsen, J.E., Videm, K., Opsahl, L. and Ronold, H.J., (2003) Implants with modified surfaces for increased bio- compatibility, and method for production thereof. US Patent No. 6627321.
[5] Cochran, D.L., Schenk, R.K., Lussi, A., Higginbottom, F.L., Buser, D. (1998) Bone response to unloaded and loaded titanium implants with a sandblasted and acid- etched surface: A histometric study in the canine mandi- ble. Journal of Biomedical Materials Research, 40, 111. doi:10.1002/(SICI)1097-4636(199804)40:1<1::AID-JBM1>3.0.CO;2-Q
[6] De Santo, I., Sanguigno, L., Causa, F., Monetta, T. and Netti, P.A. (2012) Exploring doxorubicin localization in eluting TiO2 nanotube arrays through fluorescence corre- lation spectroscopy analysis. Analyst, 137, 5076-5081. doi:10.1039/c2an36052g
[7] Wennerberg, A., Hallgren, C., Johansson, C. and Danelli, S.A. (1998) Histomorphometric evaluation of screw-shaped implants each prepared with two surface roughnesses. Clinical Oral Implants Research, 9, 11-19. doi:10.1034/j.1600-0501.1998.090102.x
[8] Wennerberg, A., Albrektsson, T. and Andersson, B. (1995) An animal study of cp titanium screws with different sur- face topographies. Journal of Materials Science: Materi- als in Medicine, 6, 302-309. doi:10.1007/BF00120275
[9] Bagno, A. and Di Bello, C. (2004) Surface treatments and roughness properties of Ti-based biomaterials. Journal of Materials Science: Materials in Medicine, 15, 935-949. doi:10.1023/B:JMSM.0000042679.28493.7f
[10] Meredith, D.O., Harris, L.G., Riehle, M.O., Curtis, A.S.G. and Richards, R.G. (2007) Effect of metal implant surface topography on fibroblast behaviour and bacterial adhe- sion. European Cells and Materials, 13, 77-79.
[11] Sul, Y.T., Johansson, C.B., Petronis, S., Krozer, A., Jeong, Y., Wennerberg, A. and Albrektsson, T. (2002) Character- istics of the surface oxides on turned and electrochemi- cally oxidized pure titanium implants up to dielectric breakdown: The oxide thickness, micropore configure- tions, surface roughness, crystal structure and chemical composition. Biomaterials, 2, 491-501. doi:10.1016/S0142-9612(01)00131-4
[12] Suzuki, K., Aoki, K. and Ohya, K. (1991) Effects of sur- face roughness of titanium implants on bone remodeling activity of femur in rabbits. Bone, 6, 507-514.
[13] Watanabe, I. and Watanabe, E. (2003) Surface changes in- duced by fluoride prophylactic agents on titanium-based orthodontic wires. American Journal of Orthodontics & Dentofacial Orthopedics, 6, 653-656. doi:10.1016/S0889-5406(03)00197-5
[14] Luthen, F., Lange, R., Becker, P., Rychly, J., Beck, U. and Nebe, J.G. (2005) The influence of surface roughness of titanium on b1- and b3-integrin adhesion and the orga- nization of fibronectin in human osteoblastic cells. Bio- materials, 26, 2423-2440.
[15] Feng, B., Weng, J., Yang, B.C., Chen, J.Y., Zhao, J.Z., He, L., Qi, S.K. and Zhang, X.D. (2002) Surface characteri- zation of titanium and adsorption of bovine serum albumin. Materials Characterization, 49, 129-137. doi:10.1016/S1044-5803(02)00341-8
[16] D’Lima, D., Lemperle, S.M., Chen, P.C., Holmes, R.E. and Colwell, C.W. (2003) Bone response to implant sur- face topography. The Journal of Arthroplasty, 8, 928-934. doi:10.1016/S0883-5403(98)90201-7
[17] Wilk, J. and Kowalski, Z.W. (2003) Titanium surface after neutralized ion beam irradiation. Vacuum, 70, 87-91. doi:10.1016/S0042-207X(02)00622-X
[18] Tsukimura, N., Kojima, N., Kubo, K., Att, W., Takeuchi, K., Kameyama, Y., Maeda, H. and Ogawa, T. (2008) The effect of superficial chemistry of titanium on osteoblastic function. Journal of Biomedical Materials Research Part A, 1, 108-116. doi:10.1002/jbm.a.31422
[19] Hansson, S. (2000) Surface roughness parameters as pre- dictors of anchorage strength in bone: A critical analysis. Journal of Biomechanics, 33, 1297-1303. doi:10.1016/S0021-9290(00)00045-2
[20] Taylor, H. (1999) Talysurf user instruction manual.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.