Three-Dimensional Planar Metallic Lenses Based on Concentric Rings with Modulated Subwavelength Width


A kind of Subwavelength Planar Metallic Lenses (SPMLs) is proposed to realize far-field optical focusing in the visible range based on concentric rings with modulated width in a silver film. The width of each metallic ring is mutative so that the radiation fields of surface plasmon polaritons can be controlled and the relevant phase retardations can be modulated to make a beam focus at the desired position. For comparison, the Subwavelength Planar Dielectric Lenses (SPDLs) structured on silica glass with the same concentric ring shapes as SPMLs are analyzed, although without opaque metal coating on SPDLs, the computational results show that SPMLs can support higher intensity focal spot, narrower full-width half-maximum beam width, and longer depth of focus at the focal region under certain lens thickness due to the coupling of surface plasomon polaritons, diffracted evanescent waves and propagated electromagnetic waves.

Share and Cite:

D. Feng, C. Zhang, L. Feng and Y. Yang, "Three-Dimensional Planar Metallic Lenses Based on Concentric Rings with Modulated Subwavelength Width," Journal of Electromagnetic Analysis and Applications, Vol. 4 No. 12, 2012, pp. 485-491. doi: 10.4236/jemaa.2012.412068.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio and P. A. Wolff, “Extraordinary Optical Transmission through Subwavelength Hole Arrays,” Nature, Vol. 391, 1998, pp. 667-669.
[2] L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry and T. W. Ebbesen, “Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays,” Physical Review Letters, Vol. 86, No. 6, 2001, pp. 1114-1117. doi:10.1103/PhysRevLett.86.1114
[3] L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, A. Degiron and T. W. Ebbesen, “Theory of Highly Directional Emission from a Single Subwavelength Aperture Surrounded by Surface Corrugations,” Physical Review Letters, Vol. 90, No. 16, 2003, pp. 167401-167403. doi:10.1103/PhysRevLett.90.167401
[4] W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy and X. Zhang, “Flying Plasmonic Lens in the Near Field for High-Speed Nanolithography,” Nature Nanotechnology, Vol. 3, 2008, pp. 733-737.
[5] H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. MartinMoreno, F. J. Garcia-Vidal and T. W. Ebbesen, “Beaming Light from a Subwavelength Aperture,” Science, Vol. 297, No. 5582, 2002, pp. 820-822. doi:10.1126/science.1071895
[6] J. H. Rice, “Beyond the Diffraction Limit: Far-Field Fluorescence Imaging with Ultrahigh Resolution,” Molecular Biosystems, Vol. 3, No. 11, 2007, pp. 781-793. doi:10.1039/b705460b
[7] N. Fang, H. Lee, C. Sun and X. Zhang, “SubDiffractionLimited Optical Imaging with a Silver Superlens,” Science, Vol. 308, No. 5721, 2005, pp. 534-537. doi:10.1126/science.1108759
[8] Y. Fu, W. Zhou, L. E. N. Lim, C. L. Du and X. G. Luo, “Plasmonic Microzone Plate: Superfocusing at Visible Regime,” Applied Physics Letters, Vol. 91, 2007, pp. 61124-61126.
[9] R. G. Mote, S. F. Yu, B. K. Ng, W. Zhou and S. P. Lau, “Near-Field Focusing Properties of Zone Plates in Visible Regime—New Insights,” Optics Express, Vol. 16, No. 13, 2008, pp. 9554-9564. doi:10.1364/OE.16.009554
[10] Y. Liu, Y. Q. Fu, X. L. Zhou, Z. W. Xu, F. Z. Fang and X. T. Hu, “Experimental Study of Indirect Phase TuningBased Plasmonic Structures for Finely Focusing,” Plasmonics, Vol. 6, No. 2, 2011, pp. 227-233. doi:10.1007/s11468-010-9192-1
[11] H. F. Shi, C. T. Wang, C. L. Du, X. G. Luo, X. C. Dong and H. T. Gao, “Beam Manipulating by Metallic NanoSlits with Variant Widths,” Optics Express, Vol. 13, No. 18, 2005, pp. 6815-6820. doi:10.1364/OPEX.13.006815
[12] H. F. Shi, C. L. Du and X. G. Luo, “Focal Length Modulation Based on a Metallic Slit Surrounded with Grooves in Curved Depths,” Applied Physics Letters, Vol. 91, No. 9, 2007, pp. 9311-9313.
[13] L. Verslegers, P. B. Catrysse, Z. F. Yu, J. S. White, E. S. Barnard, M. L. Brongersma and S. H. Fan, “Planar Lenses Based on Nanoscale Slit Arrays in a Metallic Film,” Nano Letters, Vol. 9, No. 1, 2009, pp. 235-238. doi:10.1021/nl802830y
[14] Q. Chen, “A Novel Plasmonic Zone Plate Lens Based on Nano-Slits with Refractive Index Modulation,” Plasmonics, Vol. 6, No. 2, 2011, pp. 381-385. doi:10.1007/s11468-011-9214-7
[15] D. Feng, Y. B. Yan, G. F. Jin, and S. S. Fan, “Beam Focusing Characteristics of Diffractive Lenses with Binary Subwavelength Structures,” Optics Communications, Vol. 239, No. 4-6, 2004, pp. 345-352. doi:10.1016/j.optcom.2004.05.050
[16] A. Taflove, “Computational Electrodynamics: The FiniteDifference Time-Domain Method,” Artech House, Boston, 1995.
[17] Z. Sun and H. K. Kim, “Refractive Transmission of Light and Beam Shaping with Metallic Nano-Optic Lenses,” Applied Physics Letters, Vol. 85, No. *, 2004, pp. 642644.
[18] R. Gordon and A. G. Brolo, “Increased Cut-Off Wavelength for a Subwavelength Hole in a Real Metal,” Optics Express, Vol. 13, No. 6, 2005, pp. 1933-1938. doi:10.1364/OPEX.13.001933
[19] E. D. Palik, “Handbook of Optical Constants of Solids II,” Academic Press, Boston, 1991.
[20] D. Feng, N. F. Song, L. S. Feng, P. Ou and C. X. Zhang, “Generation of an Extended Depth of Focus Using Diffractive Micro-Lenses with Binary Structures in the NonParaxial Domain,” Journal of Optics A: Pure and Applied Optics, Vol. 11, No. 6, 2009, p. 65704. doi:10.1088/1464-4258/11/6/065704

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.