Theory of Conductivity in Semiconducting Single-Wall Carbon Nanotubes


The conduction of a single-wall carbon nanotube depends on the pitch. If there are an integral number of carbon hexagons per pitch, then the system is periodic along the tube axis and allows “holes” (not “electrons”) to move inside the tube. This case accounts for a semiconducting behavior with the activation energy of the order of around 3 meV. There is a distribution of the activation energy since the pitch and the circumference can vary. Otherwise nanotubes show metallic behaviors (significantly higher conductivity). “Electrons” and “holes” can move in the graphene wall (two dimensions). The conduction in the wall is the same as in graphene if the finiteness of the circumference is disregarded. Cooper pairs formed by the phonon exchange attraction moving in the wall is shown to generate a temperature-independent conduction at low temperature (3 - 20 K).

Share and Cite:

S. Fujita, S. Godoy and A. Suzuki, "Theory of Conductivity in Semiconducting Single-Wall Carbon Nanotubes," Journal of Modern Physics, Vol. 3 No. 10, 2012, pp. 1550-1555. doi: 10.4236/jmp.2012.310191.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] S. Iijima, “Helical Microtubules of Graphitic Carbon,” Nature, Vol. 354, 1991, pp. 56-58. doi:10.1038/354056a0
[2] T. W. Ebbesen, H. J. Lezec, H. Hiura, J. W. Bennet , H. F. Ghaemi and T. Thio, “Electrical Conductivity of Individual Carbon Nanotubes,” Nature, Vol. 382, 1996, pp. 54- 56. doi:10.1038/382054a0
[3] R. Saito, G. Dresselhaus and M. S. Dresselhaus, “Physical Properties of Carbon Nanotubes,” Imperial College Press, London, 1998, pp. 35-58. doi:10.1142/9781860943799_0003
[4] S. Fujita and A. Suzuki, “Theory of Temperature Dependence of the Conductivity in Carbon Nanotubes,” Journal of Applied Physics, Vol. 107, 2010, Article ID: 013711. doi:10.1063/1.3280035
[5] S. Moriyama, K. Toratani, D. Tsuya, M. Suzuki, Y. Aoyagi and K. Ishibashi, “Electrical Transport in Semiconducting Carbon Nanotubes,” Physica E, Vol. 24, No. 1-2, 2004, pp. 46-49. doi:10.1016/j.physe.2004.04.022
[6] E. Wigner and F. Seitz, “On the Constitution of Metallic Sodium,” Physical Review, Vol. 43, No. 10, 1933, pp. 804-810. doi:10.1103/PhysRev.43.804
[7] N. W. Ashcroft and N. D. Mermin, “Solid State Physics,” Saunders, 1976, pp. 91-93, 217, 228, 229.
[8] F. Bloch, “über die Quantenmechanik der Elektronen in Kristallgittern,” Zeit Physik, Vol. 52, 1928, pp. 555-599.
[9] S. Fujita and K. Ito, “Quantum Theory of Conducting Matter,” Springer, New York, 2007, pp. 85-90, 106-107. doi:10.1007/978-0-387-74103-1
[10] S. Fujita, A. Garcia, D. O’Leyar, S. Watanabe and T. Burnett, “On the Conductance of a Lattice-Like Network,” Journal of Physics and Chemistry of Solids, Vol. 50, No. 1, 1989, pp. 27-31. doi:10.1016/0022-3697(89)90468-X
[11] B. Liu, B. Sundqvist, O. Andersson, T. W?gberg, E. B. Nyeanchi, X.-M. Zhu and G. Zou, “Electric Resistance of Single-Walled Carbon Nanotubes under Hydrostatic Pressure,” Solid State Communications, Vol. 118, No. 1, 2001, pp. 31-36. doi:10.1016/S0038-1098(01)00034-5
[12] N. F. Mott, “Conduction in Non-Crystalline Materials,” Oxford University Press, Oxford, 1987.
[13] S. Frank, P. Poncharal, Z. I. Wang and W. A. de Heer, “Carbon Nanotube Quantum Resistors,” Science, Vol. 280, No. 5370, 1998, pp. 1744-1746. doi:10.1126/science.280.5370.1744
[14] A. Javey, J. Guo, Q. Wang, M. Lundstrom and H. Dai, “Ballistic Carbon Nanotube Field-Effect Transistors,” Nature, Vol. 424, 2003, pp. 654-657. doi:10.1038/nature01797
[15] S. Fujita, K. Ito and S. Godoy, “Quantum Theory of Conducting Matter: Superconductivity,” Springer, New York, 2009, pp. 77-79.
[16] S. J. Tans, M. H. Devoret, H. Dai, A. Thess, R. E. Smalley, L. J. Geerligs and C. Dekker, “Individual Single-Wall Carbon Nanotubes as Quantum Wires,” Nature, Vol. 386, 1997, pp. 474-477. doi:10.1038/386474a0

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.