Hydraulic Jump in the Gulf of California

Abstract

Acoustic Doppler current profiles and water density profiles were measured over the 280 m deep continental slope of the Gulf of California to elucidate the bathymetric effect on zooplankton distribution. These measurements were combined with water velocity and density simulations from the Regional Ocean Model System with and without the influence of Coriolis acceleration. The data revealed an acceleration of the near-bottom flow as it moved toward increasing depths. This acceleration was produced by the adjustment of the isopycnals to bathymetry (hydraulic jump). Zooplankton patches moved downward at the continental slope and then upward, thus exhibiting wave patterns. Model outputs without the effect of Coriolis acceleration also suggested that vertical zooplankton concentration followed a wave pattern. However, when Coriolis acceleration was added to the momentum equation, the horizontal zooplankton distribution was enhanced, which reduced the vertical zooplankton concentration observed over irregular bathymetries. Coriolis acceleration was responsible for horizontal dispersal of up to 20% of the total zooplankton concentration located over the wave trough.

Share and Cite:

Salas-Monreal, D. , Salas-de-Leon, D. , Monreal-Gomez, M. , Riverón-Enzástiga, M. and Mojica-Ramírez, E. (2012) Hydraulic Jump in the Gulf of California. Open Journal of Marine Science, 2, 141-149. doi: 10.4236/ojms.2012.24017.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] H. Stommel and H. G. Farmer, “Abrupt Change in Width in Two Layer Open Channel Flow,” Journal of Marine Research, Vol. 11, 1952, pp. 205-214.
[2] D. M. Farmer and L. Armi, “Maximal Two-Layer Exchange over a Sill and through the Combination of a Sill and a Contraction with Barotropic Flow,” Journal of Fluid Mechanics, Vol. 164, 1986, pp. 53-76. doi:10.1017/S002211208600246X
[3] C. E. Lennert-Cody and P. J. S. Franks, “Plankton Patchiness in High-Frequency Internal Waves,” Marine Ecology Progress Series, Vol. 186, 1999, pp. 59-66 doi:10.3354/meps186059
[4] A. Genin, “Bio-Physical Coupling in the Formation of Zooplankton and Fish Aggregations over Abrupt Topographies,” Journal of Marine Systems, Vol. 50, 2004, pp. 3-20. doi:10.1016/j.jmarsys.2003.10.008
[5] D. A. Salas-de-Leon, M. A. Monreal-Gomez, M. Signoret and J. Aldeco, “Anticyclonic-Cyclonic Eddies and Their Impact on Near-Surface Chlorophyll Stocks and Oxygen Supersaturation over the Campeche Canyon, Gulf of Mexico,” Journal of Geophysical Research, Vol. 109, 2004, Article ID: C05012. doi:10.1029/2002JC001614
[6] L. Zavala-Sansón and A. Provenzale, “The Effects of Abrupt Topography on Plankton Dynamics,” Theoretical Population Biology, Vol. 76, No. 4, 2009, pp. 258-267. doi:10.1016/j.tpb.2009.08.004
[7] J. P. Ryan, M. A. McManus and J. M. Sullivan, “Interacting Physical, Chemical and Biological Forcing of Phytoplankton Thin-Layer Variability in Monterey Bay, California,” Continental Shelf Research, Vol. 30, No. 1, 2010, pp.7-16.
[8] D. M. Farmer and J. D. Smith, “Tidal Interaction of Stratified Flow with a Sill in Knight Inlet,” Deep Sea Research Part A, Vol. 27, No. 4, 1980, pp. 239-254. doi:10.1016/0198-0149(80)90015-1
[9] W. M. Graham, P. Fransesc and W. M. Hamner, “A Physical Context for Gelatinous Zooplankton Aggregation: A Review,” Hydrobiology, Vol. 451, 2001, pp. 199-212. doi:10.1023/A:1011876004427
[10] J. D. Nash, E. Kunze, J. M. Toole and R. W. Schmitt, “Internal Tide Reflection and Turbulent Mixing on the Continental Slope,” Journal of Physical Oceanography, Vol. 34, No. 5, 2003, pp. 1117-1134.
[11] A. Valle-Levinson, A. Trasvina-Castro, G. Gutierrez de Velasco and R. G. Armas, “Diurnal Vertical Motions over a Seamount of the Southern Gulf of California,” Journal of Marine Systems, Vol. 50, No. 1, 2004, pp. 61-77.
[12] R. E. Shea and W. W. Broenkow, “The Role of Internal Tides in the Nutrient Enrichment of Monterey Bay, California,” Estuarine, Coastal and Shelf Science, Vol. 15, 1982, pp. 57-66. doi:10.1016/0272-7714(82)90036-1
[13] J. M. Klymak and M. C. Gregg, “Tidally Generated Tur-bulence over the Knight Inlet Sill,” Journal of Physical Oceanography, Vol. 34, No. 5, 2004, pp. 1135-1151.
[14] P. Sangrà, G. Basterretxea, J. L. Pelegrí and J. Aristegui, “Chlorophyll Enhancement By Internal Waves in the Shelf-Break of Gran Canaria (Canary Islands),” Scientia Marina, Vol. 65 No. 1, 2001, pp. 89-97.
[15] K. Rinke, I. Hübner, T. Petzoldt, S. Rplinski, M. K?nig-Rinke, J. Post, A. Lorke and J. Benndorf, “How Internal Waves Influence the Vertical Distribution of Zooplankton,” Freshwater Biology, Vol. 52, No. 1, 2007, pp. 137- 144
[16] P. J. S. Franks, “Spatial Patterns in Dense Algal Blooms,” Limnology and Oceanography, Vol. 42, No. 5, 1997, pp. 1297-1305.
[17] B. R. Eden, D. K. Steinberg, S. A. Goldthwait and D. J. McGillicuddy Jr., “Zooplankton Community Structure in a Cyclonic and Mode-Water Eddy in the Sargasso Sea,” Deep Sea Research Part A, Vol. 56 No. 10, 2009, pp. 1757-1776. doi:10.1016/j.dsr.2009.05.005
[18] D. A. Salas-de-Leon, N. Carbajal-Perez, M. A. Monreal-Gomez and G. Barrientos-MacGregor, “Residual Circulation and Tidal Stress in the Gulf of California,” Journal of Geophysical Research, Vol. 108, No. 10, 2003, p. 3317.
[19] P. Ladrón-de-Guevara-Porras, E. B. E. Lavaniegos and D. G. Heckel, “Fin Whales (Balaenoptera physalus) Foraging on Daytime Surface Swarms of the Euphausiid Nyctiphanes simplex in the Ballenas Channel, Gulf of California, Mexico,” Journal of Mammalogy, Vol. 89, No. 3, 2008, pp. 559-566.
[20] D. Salas-Monreal and A. Valle-Levinson, “Continuously Stratified Flow Dynamics over a Hollow,” Journal of Geophysical Research, Vol. 114, 2009, Article ID: C03021. doi:10.1029/2007JC004648
[21] C. L. Trump and G. Marmorino, “Calibration a Gyro-compass Using ADCP and DGPS Data,” Journal of Atmospheric and Oceanic Technology, Vol. 14, No. 1, 1997, pp. 211-214.
[22] A. R. Longhurst and D. L. R. Seibert, “Skill in the Use of Folsom’s Plankton Sampler Splitter,” Limn Ocean, Vol. 12, No. 2, 1967, pp. 334-335. doi:10.4319/lo.1967.12.2.0334
[23] G. Tregouboff and Rose, “Manuel de planctonologie mediterraneenne,” Tome II. Centre National de la Recherche Scientifique, Paris, 1957.
[24] R. Robertson, “Modeling Internal Tides over Fieberling Guyot: Resolution, Parameterization, Performance,” Ocean Dynamics, Vol. 56, No. 5-6, 2006, pp. 430-444.
[25] A. F. Shchepetkin and J. C. McWilliams, “A Method for Computing Horizontal Pressure-Gradient Force in an Oceanic Model with a Nonaligned Vertical Coordinate,” Journal of Geophysical Research, Vol. 108, No. C3, 2003, p. 3090. doi:10.1029/2001JC001047
[26] A. M. Moore, H. G. Arango, E. Di Lorenzon, B. D. Cornuelle, A. J. Miller and D. J. Neilson, “A Comprehensive Ocean Prediction and Analysis System Based on the Tangent Linear and Adjoint of a Regional Ocean Model,” Ocean-Modeling, Vol. 7, No. 2, 2004, pp. 227-258. doi:10.1016/j.ocemod.2003.11.001
[27] M. A. Monreal-Gomez and D. A. Salas-de-León, “Simulación de la Circulación en la Bahía de Campeche,” Geofisica Internacional, Vol. 29, 1990, pp. 101-111.
[28] N. Carbajal and J. O. Backhaus, “Simulation of Tides, Residual Flow and Energy Budget in the Gulf of California,” Oceanologica Acta, Vol. 21, No. 3, 1998, pp. 429- 446. doi:10.1016/S0399-1784(98)80028-5
[29] L. Y. Oey, T. Ezer, Y. Miyazawa and C. R. Wu, “Edito-rial-International Workshop on Modeling the Ocean (IWMO) Special Issue in Ocean Dynamics,” Ocean Dynamics, Vol. 60, 2010, pp. 299-300. doi:10.1007/s10236-010-0281-7
[30] D. Salas-Monreal, “Continuously Stratified Flow Dynamics over a Hollow,” Ph.D. Thesis, Old Dominion University, Norfolk, 2006, 88 p.
[31] K. J. Heywood, “Diel Vertical Migration of Zooplankton In the Northeast Atlantic,” Journal of Plankton Research, Vol. 18, No. 2, 1996, pp. 163-184. doi:10.1093/plankt/18.2.163
[32] D. A. Salas-de-León, N. Carbajal, M. A. Monreal-Gómez and A. Gil-Zurita, “Vorticity and Mixing Induced by the Barotropic M2 Tidal Current and Zooplankton Biomass Distribution in the Gulf of California,” Journal of Sea Research, Vol. 66, 2, 2011, pp. 143-153.
[33] W. S. Pegau, E. Boss and A. Martinez, “Ocean Color Observations of Eddies during the Summer in the Gulf of California,” Geophysical Research Letters, Vol. 29, No. 9, 2002, p. 1295. doi:10.1029/2001GL014076
[34] A. E. White, F. G. Prahl and R. M. Letelier, “Summer Surface Waters in the Gulf of California: Prime Habitat for Biological N2 Fixation,” College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, 2007.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.