Nanocapacitor with a Cantor Multi-Layered Structure


We calculate numerically the quantum capacitance of a nanocapacitor formed of oxide-silicon layers deposited alternately with their widths following a Cantor set structure. We show that this configuration brings about a nano-hybrid capacitor which allows a classical and quantum behavior depending on the Cantor generation. In addition, we propose an approximate equivalent circuit representation for the nano-hybrid capacitor.

Share and Cite:

R. Montelongo, D. González, R. Bustos and G. González, "Nanocapacitor with a Cantor Multi-Layered Structure," Journal of Modern Physics, Vol. 3 No. 9, 2012, pp. 1013-1017. doi: 10.4236/jmp.2012.39132.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] D. Goldhaber-Gordon, M. S. Montemerlo, J. C. Love, G. J. Optiteck and J. Ellenbogen, “Overview of Nanoelectronic Devices,” Proceedings of the IEEE, Vol. 85, No. 4, 1997, pp. 521-540. doi:10.1109/5.573739
[2] B. B. Mandelbrot, “The Fractal Geometry of Nature,” Freeman, New York, 1983.
[3] J. A. Monsoriu, F. R. Villatoro, M. J. Marin, J. Pe′rez and L. Monreal, “Quantum Fractal Superlattices,” American Journal of Physics, Vol. 74, No. 9, 2006, pp. 831-836. doi:10.1119/1.2209242
[4] J. Sune, P. Olivo and B. Ricco, “Self-Consistent Solution of Poison and Schrdinger Equations in Accumulated Semi-Conductor-Insulator Interfaces,” Journal of Applied Physics, Vol. 70, No. 1, 1991, p. 337. doi:10.1063/1.350278
[5] S. L. Lo, D. Buchanan, Y. Taur and W. Wang, “Quantum Mechanical Modeling of Electron Tunneling Current from the Inversion Layer of Ultra-Thin Oxide nMOSFETs,” IEEE on Electron Device Letters, Vol. 18, No. 5, 1997, pp. 209-211. doi:10.1109/55.568766
[6] A. Ghetti, “Characterization and Modeling of the Tunneling Current in Si-SiO2-Si Structures with Ultra-Thin Oxide Layer,” Microelectronic Engineering, Vol. 59, No. 1-4, 2001, pp. 127-136. doi:10.1016/S0167-9317(01)00656-6
[7] R. Castagne and A. Vapaille, “Description of the SiO2-Si Interface Properties by Means of very Low Frequency MOS Capacitance Measurements,” Surface Science, Vol. 28, No. 1, 1971, pp. 157-193, doi:10.1016/0039-6028(71)90092-6
[8] S. H. Lo, D. A. Buchanan and Y. Taur, “Modeling and Characterization of Quantization, Polysilicon Depletion, and Direct Tunneling Effects in MOSFETs with Ultrathin Oxides,” IBM Journal of Research and Development, Vol. 43, No. 3, 1999, pp. 327-337. doi:10.1147/rd.433.0327
[9] A. Ghetti, J. Bude, P. Silverman, A. Hamad and H. Vaidya, “Modeling and Simulation of Tunneling Current in MOS Devices including Quantum Mechanical Effects,” IEICE Transactions on Electronics, Vol. E83-C, No. 8, 2000, pp. 1175-1182.
[10] P. Harrison, “Quantum Wells, Wires and Dots,” 2nd Edition, Wiley, Hoboken, 2008.
[11] S. Datta, “Quantum Transport: Atom to Transistor,” Cambridge University Press, Cambridge, 2005. doi:10.1017/CBO9781139164313
[12] D. K. Ferry and S. M. Goodnick, “Transport in Nanostructures,” Cambridge University Press, Cambridge, 2001.
[13] M. Y. Dogish and F. D. Ho, “A Comprehensive Analytical Model for Metal-Insulator Semiconductor (MIS) Devices,” IEEE Transactions on Electron Devices, Vol. 39, No. 12, 1992, pp. 2771-2780. doi:10.1109/16.168723
[14] K. S. Krisch, J. D. Bude and L. Manchanda, “Gate Capacitance Attenuation in MOS devices with Thin Dielectrics,” IEEE Electron Device Letters, Vol. 17, No. 14, 1996, pp. 521-524. doi:10.1109/55.541768
[15] W. Magnus, and W. Schoenmaker, “Full Quantum Mechanical Model for the Charge Distribution and the Leakage Currents in Ultra-Thin MOS Capacitors,” Journal of Applied Physics, Vol. 88, No. 10, 2000, pp. 5833-5842. doi:10.1063/1.1320025

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.