Nitrogen Use Efficiency under Different Field Treatments on Maize Fields in Central China: A Lysimeter and 15N Study


Nitrogen loss from farmland has caused serious problems all over the world. This field study assessed Nitrogen Use Efficiency1 (NUE) and biomass yield under four different field treatments in the Hubei Province, in central China. Results show that 1) in these four treatments, the maize monoculture plots have the highest rate of fertilizer N losses (69.12%), and the lowest (32.45%) is treated by surface rice straw mulch of maize intercrop with peanut; 2) compared with monoculture, polyculture plots have 36.9 kg·ha–1 and 26.57 kg·ha–1 more nitrogen absorption in the mulched and un-mulched plots respectively, however, polyculture has a lesser effect on NUE; 3) surface straw mulch is an effective way to keep nitrogen in the soil (0 - 100 cm), however it may decrease dry matter yield in monoculture plots; 4) maize intercrop with peanut and surface mulch can keep 47.63% of the fertilizer N in the soil profiles (0 - 100 cm), which is the highest among these four treatments.

Share and Cite:

Zhang, J. , Li, Z. , Li, K. , Huang, W. and Sang, L. (2012) Nitrogen Use Efficiency under Different Field Treatments on Maize Fields in Central China: A Lysimeter and 15N Study. Journal of Water Resource and Protection, 4, 590-596. doi: 10.4236/jwarp.2012.48068.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] FAO, 2011.
[2] D. Tilman, J. Fragione, B. Wolff, C. D’Antonio, A. Dobson, R. Howarth, D. Schindler, W. H. Schelsinger, D. Simerloff and D. Swakhamer, “Forecasting Agriculturally Driven Global Environmental Change,” Science, Vol. 292, No. 5515, 2001, pp. 281-284. doi:10.1126/science.1057544
[3] D. Norse, “Non-Point Pollution from Crop Production: Global, Regional and National Issues,” Pedosphere, Vol. 15, No. 4, 2005, pp. 499-508.
[4] A. Mapiki, G. B. Reddy and B. R. Singh, “Fate of Fertilizer-15N to a Maize Crop Grown in Northern Zambia,” Acta Agriculturae Scandinavica, Section B—Soil & Plant Science, Vol. 43, No. 4, 1993, pp. 231-237.
[5] H. J. Di and K. C. Cameron, “Nitrate Leaching in Temperate Agro-Ecosystems: Sources, Factors and Mitigating Strategies,” Nutrient Cycling in Agroecosystem, Vol. 64, No. 3, 2002, pp. 237-256. doi:10.1023/A:1021471531188
[6] W. W. Zhang, M. J. Shi and Z. H. Huang, “Controlling Non-Point-Source Pollution by Rural Resource Recycling. Nitrogen Runoff in Tai Lake Valley, China, as an Example,” Sustainability Science, Vol. 1, No. 1, 2006, pp. 83- 89. doi:10.1007/s11625-006-0009-2
[7] X. B. Wang, W. B. Hoogmoed, D. X. Cai, U. D. Perdok and O. Oenema, “Crop Residue, Manure and Fertilizer in Dryland Maize under Reduced Tillage in Northern China: II Nutrient Balances and Soil Fertility,” Nutrient Cycling in Agroecosystems, Vol. 79, No. 1, 1996, pp. 17-34. doi:10.1007/s10705-006-9070-6
[8] R. Senaratne, N. D. L. Liyanage and D. S. Ratnasinghe, “Effect of K on Nitrogen Fixation of Intercrop Groundnut and the Competition between Intercrop Groundnut and Maize,” Nutrient Cycling in Agroecosystems, Vol. 34, No. 1, 1993, pp. 9-14. doi:10.1007/BF00749954
[9] A. Aftab, N. Hanley and A. Kampas, “Co-Ordinated Environmental Regulation: Controlling Non-Point Nitrate Pollution while Maintaining River Flows,” Environmental and Resource Economics, Vol. 38, No. 4, 2007, pp. 573-593. doi:10.1007/s10640-007-9090-y
[10] A. Kampas and B. White, “Administrative Costs and Instrument Choice for Stochastic Non-Point Source Pollutants,” Environmental and Resource Economics, Vol. 27, No. 2, 2004, pp. 109-133.
[11] A. Maltas, M. Corbeels, E. Scopel, R. Oliver, J.-M. Douzet, F. A. M. da Silva and J. Wery, “Long-Term Effects of Continuous Direct Seeding Mulch-Based Cropping Systems on Soil Nitrogen Supply in the Cerrado Region of Brazil,” Plant and Soil, Vol. 298, No. 1-2, 2007, pp. 161-173. doi:10.1007/s11104-007-9350-1
[12] B. D. Meek, D. L. Carter, D. T. Westermann, J. L. Wright and R. E. Peckenpaugh, “Nitrate Leaching under Furrow Irrigation as Affected by Crop Sequence and Tillage,” Soil Science Society of America Journal, Vol. 59, No. 1, 1995, pp. 204-210. doi:10.2136/sssaj1995.03615995005900010031x
[13] J. E. Turpin, J. P. Thompson, S. A. Waring and J. MacKenzie, “Nitrate and Chloride Leaching in Vertosols for Different Tillage and Stubble Practices in Fallow- Grain Cropping,” Australian Journal of Soil Research, Vol. 36, No. 1, 1998, pp. 31-44. doi:10.1071/S97037
[14] A. Inal, A. Gunes, F. Zhang and I. Cakmak, “Peanut/ Maize Intercropping Induced Changes in Rhizosphere and Nutrient Concentrations in Sheoots,” Plant Physiology and Biochemistry, Vol. 45, No. 5, 2007, pp. 350-356. doi:10.1016/j.plaphy.2007.03.016
[15] A. C. Franke, G. Laberge, B. D. Oyewole and S. Schulz, “A Comparison between Legume Technologies and Fallow, and Their Effects on Maize and Soil Traits, in Two Distinct Environments of the West African Savannah,” Nutrient Cycling in Agroecosystems, Vol. 82, No. 2, 2008, pp. 117-135. doi:10.1007/s10705-008-9174-2
[16] C. G. L. Zaongo, C. W. Wendt, R. J. Lascano and A. S. R. Juo, “Interactions of Water, Mulch and Nitrogen on Sorghum in Niger,” Plant and Soil, Vol. 197, No. 1, 1997, pp. 119-126. doi:10.1023/A:1004244109990
[17] T. M. Addiscott, “Fertilizers and Nitrate Leaching,” In: R. E. Hester and R. M. Harrison, Eds., Agricultural Chemicals and the Environment, Issues in Environmental Science Technology, Vol. 5, 1996, pp. 1-26.
[18] R. J. Haynes and P. H. Williams, “Nutrient Cycling and Soil Fertility in the Grazed Pasture Ecosystem,” Advances in Agronomy, Vol. 49, 1993, pp. 119-199. doi:10.1016/S0065-2113(08)60794-4
[19] H. J. Di and K. C. Cameron, “Nitrate Leaching in Temperate Agroecosystems: Sources, Factors and Mitigating Strategies,” Nutrient Cycling in Agroecosystems, Vol. 64, No. 3, 2002, pp. 237-256. doi:10.1023/A:1021471531188
[20] Y. N. Song, F. S. Zhang, P. Marschner, F. L. Fan, H. M. Gao, X. G. Bao, J. H. Sun and L. Li, “Effect of Intercropping on Crop Yield and Chemical and Microbiological Properties in Rhizosphere of Wheat, Maize and Faba Bean,” Biology and Fertility of Soils, Vol. 43, No. 5, 2007, pp. 565-574. doi:10.1007/s00374-006-0139-9
[21] C. A. Francis, “Biological Efficiencies in Mixed Multiple Cropping Systems,” Advances in Agronomy, Vol. 42, 1989, pp. 1-42. doi:10.1016/S0065-2113(08)60522-2
[22] L. Li, S. C. Yang, X. L. Li, F. S. Zhang, P. Christie, “Interspecific Complementary and Competitive Interaction between Intercropped Maize and Faba Bean,” Plant and Soil, Vol. 212, No. 2, 1999, pp. 105-114. doi:10.1023/A:1004656205144
[23] M. Karpenstein-Machan and R. Stuelpnagel, “Biomass Yield and Nitrogen Fixation of Legumes Monocropped and Intercropped with Rye and Rotation Effects on a Subsequent Maize Crop,” Plant and Soil, Vol. 218, No. 1-2, 2000, pp. 215-232. doi:10.1023/A:1014932004926
[24] R. C. Martin, H. D. Voldeng and D. L. Smith, “Nitrogen Transfer from Nodulating Soybean to Maize or to Non- Nodulating Soybean in Intercrop: The 15N Dilution Methods,” Plant and Soil, Vol. 132, No. 1, 1991, pp. 53-63. doi:10.1007/BF00011012
[25] E. S. Jensen, “Barley Uptake of N Deposited in the Rhiz- osphere of Associated Field Pea,” Soil Biology and Biochemistry, Vol. 28, No. 2, 1996, pp. 159-168.
[26] M. Liedgens, E. Frossard and W. Richner, “Interaction of Maize and Italian Rygrass in a Living Mulch System: (2) Nitrogen and Water Dynamics,” Plant and Soil, Vol. 259, No. 1-2, 2004, pp. 243-258. doi:10.1023/B:PLSO.0000020965.94974.21
[27] R. W. Willey, “Intercropping—Its Importance and Research Needs. Part 1. Competition and Yield Advantages,” Field Crop Abstracts, Vol. 32, 1979, pp. 1-10.
[28] R. W. Willey and M. R. Rao, “A Competitive Ratio for Quantifying Competition between Inter-Crops,” Experimental Agriculture, Vol. 16, No. 2, 1980, pp. 117-125. doi:10.1017/S0014479700010802
[29] R. W. Willey, M. Natarajan, M. S. Reddy, M. R. Rao, P. T. C. Nambiar, J. Kannaiyan and V. S. Bhatnagar, “Intercropping Studies with Annual Crops,” In: J. Nugent and M. O’Connor, Eds., Better Crops for Food, Pitman Books, London, 1983, pp. 83-100.
[30] S. T. Ikerra1, J. A. Maghembe, P. C. Smithson and R. J. Buresh, “Soil Nitrogen Dynamics and Relationships with Maize Yields in a Gliricidia—Maize Intercrop in Malawi,” Plant and Soil, Vol. 211, No. 2, 1999, pp. 155-164. doi:10.1023/A:1004636501488
[31] P. K. Ghosh, M. Mohanty, K. K. Bandyopadhyay, D. K. Painuli and A. K. Misra, “Growth, Competition, Yields Advantage and Economics in Soybean/Pigeonpea Intercropping System in Semi-Arid Tropics of India: II. Effect of Nutrient Management,” Field Crops Research, Vol. 96, No. 1, 2006, pp. 90-97. doi:10.1016/j.fcr.2005.05.010
[32] A. Siczek and J. Lipiec, “Soybean Nodulation and Nitrogen Fixation in Response to Soil Compaction and Surface Straw Mulching,” Soil and Tillage Research, Vol. 114, No. 1, 2011, pp. 50-56. doi:10.1016/j.still.2011.04.001
[33] B. S. Sandhu, B. Singh, B. Singh and K. L. Khera, “Maize Response to Intermittent Submergence, Straw Mulching and Supplemental N-Fertilization in Subtropical Region,” Plant and Soil, Vol. 96, No. 1, 1986, pp. 45-46. doi:10.1007/BF02374994
[34] J. A. Tolk, T. A. Howell and S. R. Evett, “Effect of Mulch, Irrigation, and Soil Type on Water Use and Yield of Maize,” Soil and Tillage Research, Vol. 50, No. 2, 1999, pp. 137-147. doi:10.1016/S0167-1987(99)00011-2
[35] Q. Q. Li, Y. H. Chen, M. Y. Liu, X. B. Zhou, S. L. Yu and B. D. Dong, “Effects of Irrigation and Straw Mulching on Microclimate Characteristics and Water Use Effeciency of Winter Wheat in North China,” Plant Production Science, Vol. 11, No. 2, 2008, pp. 161-170. doi:10.1626/pps.11.161

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.