Generation of biomaterial particles with controlled dimensions via electrospraying


It is well known that small biomaterial particles can lead to superior properties demanded by advanced applications in tissue engineering. Electrospraying has been considered as a promising approach to prepare fine particles, but reducing the particle size during such jetting process is always challenging. This is because the size of the as-sprayed particles is always limited by the device outlet diameter used. In the study we show that hydroxyapatite (HA) relics of 2 - 3 μm with low standard deviation can be deposited using a large nozzle (diameter of 1100 μm) only by reducing the nozzle tip angle from 90° to 15°. The mechanism of such phenomenon was extensively discussed, and a range of refined HA patterns were successfully prepared using the updated electrspraying configuration. We anticipate our findings to have a significant impact on the research of nanostructured biomaterials with superior properties which are realized by reducing the particle size using a greener electrically-driven processing technique.

Share and Cite:

Li, X., Han, G., Huang, J., Edirisinghe, M. and Bonfield, W. (2012) Generation of biomaterial particles with controlled dimensions via electrospraying. Open Journal of Regenerative Medicine, 1, 10-17. doi: 10.4236/ojrm.2012.11002.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Whitesides, G.M. (2003) The “right” size in nanobiotechnology. Nature Biotechnology, 21, 1161-1165. doi:10.1038/nbt872
[2] Sarikaya, M., Tamerler, C., Jen, A.K.Y., Schulten, K. and Baneyx, F. (2003) Molecular biomimetics: Nanotechnol-ogy through biology. Nature Materials, 2, 577-585. doi:10.1038/nmat964
[3] Lewis, J.A. (2006) Direct ink writing of 3D functional materials. Advanced Functional Materials, 16, 2193-2204. doi:10.1002/adfm.200600434
[4] Park, J.U., Hardy, M., Kang, S.J., Barton, K., Adair, K., Mukhopadhyay, D.K., Lee, C.Y., Strano, M.S., Alleyne, A.G., Georgiadis, J.G., Ferreira, P.M. and Rogers, J.A. (2007) High-resolution electrohydrodynamic jet printing. Nature Materials, 6, 782-789. doi:10.1038/nmat1974
[5] Zeleny, J. (1914) The electrical discharge from liquids points and a hydrostatic method of measuring the electric intensities at their surfaces. Physics Review E, 3, 69-91. doi:10.1103/PhysRev.3.69
[6] Taylor, G. (1964) Disintegration of water drops in electric field. Proceedings of the Royal Society of London Series A—Mathematical and Physical Sciences, 280, 383-397. doi:10.1098/rspa.1964.0151
[7] Hartman, R.P.A., Brunner, D.J., Camelot, D.M.A., Marjnissen, J.C.M. and Scarlett, B. (1999) Electrohydrodynamic atomization in the conejet mode physical modeling of the liquid cone and jet. Journal of Aerosol Science, 30, 823-849. doi:10.1016/S0021-8502(99)00033-6
[8] Cloupeau, M. and Prunet-Foch, B. (1990) Eletrostatic spraying of liquids: Mainfunctioning modes. Journal of Electrostatic, 25, 165-184. doi:10.1016/0304-3886(90)90025-Q
[9] Rulison, A.J. and Flagan, R.C. (1994) Electrospray atomization of electrolytic solution. Journal of Colloid and Interface Science, 167, 135-145. doi:10.1006/jcis.1994.1341
[10] Funada, T. and Joseph, D.D. (2002) Viscous potential flow analysis of capillary instability. International Journal of Multiphase Flow, 28, 1459-1478. doi:10.1016/S0301-9322(02)00035-6
[11] Ganan-Calvo, A., Lasheras, J.C., Davila, J. and Barrero, A. (1994) The electrostatic spray emitted from an electrified conical meniscus. Journal of Aerosol Science, 25, 1121-1142. doi:10.1016/0021-8502(94)90205-4
[12] Hartman, R.P.A., Borra, J.P., Brunner, D.J., Marijnissen, J.C.M. and Scarlett, B. (1999) The evolution of electrohydrodynamic sprays produced in the cone-jet mode, a physical model. Journal of Electrostatics, 47, 143-170. doi:10.1016/S0304-3886(99)00034-0
[13] Ganan-Calvo, A., Davila, J. and Barrero, A. (1997) Current and droplet size in the electrospraying of liquids. Scaling laws. Journal of Aerosol Science, 28, 249-275. doi:10.1016/S0021-8502(96)00433-8
[14] Wilhelm, O., Madler, L. and Pratsinis, S.E. (2003) Electrospray evaporation and deposition. Journal of Aerosol Science, 34, 815-836. doi:10.1016/S0021-8502(03)00034-X
[15] Rayleigh, F.R.S. (1878) On the instability of jets. Proceedings London Mathematical Society, 10, 4-13. doi:10.1112/plms/s1-10.1.4
[16] Fenn, J.B., Mann, M., Meng, C.K. and Wong, S.F. (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science, 246, 64-71. doi:10.1126/science.2675315
[17] Vanzomeren, A.A., Kelder, E.M., Marijnissen, J.C.M. and Schoonman, J. (1994) The production of thin-films of LiMn2O4 by electrospraying. Journal of Aerosol Science, 25, 1229-1235. doi:10.1016/0021-8502(94)90211-9
[18] Lu, J., Chu, J., Huang, W. and Ping, Z. (2002) Preparation of thick Pb(Zr, Ti)O3 (PZT) film by electrostatic spray deposition (ESD) for application in micro-system tech-nology. Japanese Journal of Applied Physics, 41, 4317- 4320. doi:10.1143/JJAP.41.4317
[19] Chen, C.H., Emond, M.H.J., Kelder, E.M., Meester, B. and Schoonman, J. (1999) Electrostatic sol-spray deposition of nanostructured ceramic thin films. Journal of Aerosol Science, 30, 959-967. doi:10.1016/S0021-8502(98)00075-5
[20] Hench, L.L. (1998) Bioceramics. Journal of American Ceramic Society, 81, 1705-1728. doi:10.1111/j.1151-2916.1998.tb02540.x
[21] Li, X., Huang, J., Ahmad, Z. and Edirisinghe, M.J. (2007) Electrohydrodynamic coating of metal with nano-sized hydroxyapatite. Journal of Biomedical Materials and Engineering, 17, 335-346.
[22] Ahmad, Z., Huang, J., Edirisinghe, M.J., Jayasinghe, S.N., Best, S.M., Bonfield, W., Brooks, R.A. and Rushton, N. (2006) Electrohydrodynamic print-patterning of nanohydroxyapatite. Journal of Biomedical Nanotechnology, 2, 201-207. doi:10.1166/jbn.2006.032
[23] Li, X., Koller, G., Huang, J., Di Silvio, L., Renton, T., Esat, M., Bonfield, W. and Edirisinghe, M. (2010) A Novel Jet-based nHA patterning technique for osteoblast guidance. Journal of the Royal Society Interface, 7, 189-197. doi:10.1098/rsif.2009.0101
[24] Jones, A.R. and Thong, K.C. (1971) The production of charged monodisperse fuel droplets by electrical dispersion. Journal of Physics D, 4, 1159-1166. doi:10.1088/0022-3727/4/8/316

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.