Anti-Inflammatory Effect of 3-Methylcarbazoles on RAW 264.7 Cells Stimulated with LPS, Polyinosinic-Polycytidylic Acid and Pam3CSK


In the present study, 3-methylcarbazole and 1-methoxy-3-methylcarbazole were isolated from the culture of Streptomyces sp. LJK109, endophyte of Alpinia galanga Swartz. 3-methylcarbazole, a carbazole derivative, has been found to be highly potent as anti-inflammatory agent. The immunomodulatory activity of these agents in toll like receptor (TLR)-activated RAW 264.7 macrophages induced by lipopolysaccharide (LPS), Poly(I:C), and pam3CSK was investigated by assessing nitric oxide (NO) and pro-inflammatory cytokines. The 3-methylcarbazoles dose-dependently suppressed the release of NO, PGE2, TNF-α, IL-1β, IL-6 and IL-10 in LPS- and pam3CSK-activated macrophages but not in Poly(I:C)-activated macrophages. Our results suggest that 3-methylcarbazoles can be further developed as a promising anti-inflammatory remedy.

Share and Cite:

T. Taechowisan, S. Chanaphat, W. Ruensamran and W. S. Phutdhawong, "Anti-Inflammatory Effect of 3-Methylcarbazoles on RAW 264.7 Cells Stimulated with LPS, Polyinosinic-Polycytidylic Acid and Pam3CSK," Advances in Microbiology, Vol. 2 No. 2, 2012, pp. 98-103. doi: 10.4236/aim.2012.22013.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] P. Sardi, M. Saracchi, S. Ouaroni, B. Petrolini, G. E. Borgonovoli and S. Merli, “Isolation of Endophytic Streptomyces from Surface-Sterilized Roots,” Applied and Environmental Microbiology, Vol. 58, No. 8, 1992, pp. 2691-2693.
[2] M. Shimizu, Y. Nakagawa, Y. Sato, T. Furumai, Y. Igarashi, H. Onaka, R. Yoshida and H. Kunoh, “Studies on Endophytic Actinomycetes (I) Streptomyces sp. Isolated from Rhododendron and Its Antifungal Activity,” Journal of General Plant Pathology, Vol. 366, No. 1, 2000, pp. 360-366. doi:10.1007/PL00012978
[3] U. F. Castillo, J. K. Harper, G. A. Strobel, J. Sears, K. Alesi, E. J. Ford, J. Lin, M. Hunter, M. Maranta, H. Ge, D. Yaver, J. B. Jenson, H. Porter, R. Robison, D. Millar, W. M. Hess, M. A. Condron and D. B. Teplow, “Kakadumycins, Novel Antibiotics from Streptomyces NRRL 30566, an Endophyte of Grevillea pteridifolia,” FEMS Microbiology Letters, Vol. 224, No. 2, 2003, pp. 183-190. doi:10.1016/S0378-1097(03)00426-9
[4] U. F. Castillo, G. A. Strobel, E. J. Ford, W. M. Hess, H. Porter, J. B. Jenson, H. Albert, R. Robison, M. A. Condron, D. B. Teplow, D. Stevens and D. Yever, “Munumbicins, Wide-Spectrum Antibiotics Produced by Streptomyces NRRL 30562, Endophytic on Kennedia nigriscans,” Microbiology, Vol. 148, No. 9, 2002, pp. 2675-2685.
[5] D. Ezra, U. F. Castillo, G. A. Strobel, W. M. Hess, H. Porter, J. B. Jensen, M. A. Condron, D. B. Teplow, J. Sears, M. Maranta, M. Hunter, B. Weber and D. Yaver, “Coronamycins, Peptide Antibiotics Produced by a Verticillate Streptomyces sp. (MSU-2110) Endophytic on Monstera sp.,” Microbiology, Vol. 150, No. 4, 2004, pp. 785-793. doi:10.1099/mic.0.26645-0
[6] T. Taechowisan, C. Lu, Y. Shen and S. Lumyong, “4-Arylcoumarins from Endophytic Streptomyces aureofaciens CMUAc130 and Their Antifungal Activity,” Annals of Microbiology, Vol. 55, No. 1, 2005, pp. 63-66.
[7] T. Taechowisan, C. Lu, Y. Shen and S. Lumyong, “Anti-Inflammatory Effects of 4-Arylcoumarins in LPS-Induced Murine Macrophage RAW 264.7 Cells,” Pharmaceutical Biology, Vol. 44, No. 8, 2006, pp. 576-580. doi:10.1080/13880200600896694
[8] M. Rinetti, G. Ugolotti, B. Calbiani, L. Colombi-Zinelli, M. Cisternino and N. Papa, “Antiinflammatory Drugs and Gastric Emptying. A Comparison between Acetylsalicyclic Acid and Carprofen,” Arzneimittelforschung, Vol. 32, No. 12, 1982, pp. 1561-1563.
[9] F. Rubio, S. Seawall, R. Pocelinko, B. DeBarbieri, W. Benz, L. Berger, L. Morgan, J. Pao, T.H. Williams and B. Koechlin, “Metabolism of Carprofen, a Nonsteroid Anti-Inflammatory Agent, in Rats, Dogs, and Humans,” Journal of Pharmaceutical Sciences, Vol. 69, No. 11, 1980, pp. 1245-1253. doi:10.1002/jps.2600691104
[10] T. Taechowisan, J. F. Peberdy and S. Lumyong, “Isolation of Endophytic Actinomycetes from Selected Plants and Their Antifungal Activity,” World Journal of Microbiology and Biotechnology, Vol. 19, No. 4, 2003, pp. 381-385. doi:10.1023/A:1023901107182
[11] T. Taechowisan and S. Lumyong, “Activity of Endophytics Actinomycetes From Roots of Zingiber officinale and Alpinia galanga against Phytopathogenic Fungi,” Annals of Microbiology, Vol. 53, No. 3, 2003, pp. 291-298.
[12] D. P. Chakraborty, K. C. Das and S. P. Basak, “New Synthesis of Isomeric Methylcarbazoles,” Journal of the Indian Chemical Society, Vol. 45, No.1, 1968, pp. 84-86.
[13] H. Furukawa, T. S. Wu, T. Ohta and C. S. Kuoh, “Chemical Constituents of Murraya euchrestifolia HAYATA. Structures of Novel Carbazolequinones and other New Carbazole Alkaloids,” Chemical and Pharmaceutical Bulletin, Vol. 33, No. 10, 1985, pp. 4132-4138. doi:10.1248/cpb.33.4132
[14] M. Chakrabarty and A. Batabyal, “Indolisation of Cyclohexanone Phenylhydrazones Using Phosphorous Trichloride,” Indian Journal of Chemistry, Vol. 31B, No. 1, 1992, pp. 199-201.
[15] D. P. Chakraborty, B. K. Barman and P. K. Bose, “On the Constitution of Murrayanine, a Carbazole Derivative Isolated from Murraya koengii Spreng,” Tetrahedron, Vol. 21, No. 1, No. 2, 1965, pp. 681-685.
[16] M. Fiebig, J. M. Pezzuto, D. D. Soejarto and A. D. Kinghorn, “Koenoline, a Further Cytotoxic Carbazole Alkaloid from Murraya koengii,” Phytochemistry, Vol. 24, No. 12, 1985, pp. 3041-3043. doi:10.1016/0031-9422(85)80052-2
[17] J. Reisch, O. Goj, A. Wickramasinghe, H. M. T. Bandara Herath and G. Henkel, “Carbazole Alkaloids from Seeds of Murraya koengii,” Phytochemistry, Vol. 31, No. 8, 1992, pp. 2877-2879. doi:10.1016/0031-9422(92)83651-E
[18] C. Ito, Y. Thoyama, M. Omura, I. Kajira and H. Furukawa, “Alkaloidal Constituents of Murraya koengii. Isolation and Structural Elucidation of Novel Binary Carbazolequinones and Carbazole Alkaloids,” Chemical and Pharmaceutical Bulletin, Vol. 41, No. 12, 1993, pp. 2096-2100. doi:10.1248/cpb.41.2096
[19] M. Chakrabarty, A. C. Nath, S. Khasnobis, M. Chakrabarty, Y. Konda, Y. Harigaya and K. Komiyama, “Carbazole Alkaloids from Murraya koengii,” Phytochemistry, Vol. 46, No. 4, 1997, pp. 751-755. doi:10.1016/S0031-9422(97)00345-2
[20] R. S. Ramsewak, M. G. Nair, G. M. Strasburg, D. L. De-Witt and J. L. Nitiss, “Biologically Active Carbazole Alkaloids from Murraya koenigii,” Journal of Agricultural and Food Chemistry, Vol. 47, No. 2, 1999, pp. 444-447. doi:10.1021/jf9805808
[21] N. M. Cuong, T. Q. Hung, T. V. Sung and W. C. Taylor, “A New Dimeric Carbazole Alkaloid from Glycosmis stenocarpa Roots,” Chemical and Pharmaceutical Bulletin, Vol. 52, No. 10, 2004, pp. 1175-1178. doi:10.1248/cpb.52.1175
[22] S. V. Tembhurne and D. M. Sakarkar, “Protective Effect of Murraya koenigii (L) Leaves Extract in Streptozotocin Induced Diabetics Rats Involving Possible Antioxidant Mechanism,” Journal of Medicinal Plants Research, Vol. 4, No. 22, 2010, pp. 2418-2423.
[23] S. Pandey, S. P. Sah, M. L. Sah and D. Mishra, “An Antioxidant Potential of Hydromethanolic Extract of Urtica parviflora Roxb,” Journal of Basic Clinical Pharmacy, Vol. 1, No. 3, 2010, pp. 191-195.
[24] M. Rawat and W. D. Wulff, “Total Synthesis of Carbazoquinocin C: Application of the O-Benzannulation of Fischer Carbene Complexes to Carbazole-3,4-quinone Alkaloids,” Organic Letters, Vol. 6, No. 3, 2004, pp. 329-332. doi:10.1021/ol0360445
[25] S. Sathaye, Y. Bagul, S. Gupta, H. Kaur and R. Redkar, “Hepatoprotective Effects of Aqueous Leaf Extract and Crude Isolates of Murraya koenigii against in Vitro Ethanol-Induced Hepatotoxicity Model,” Experimental and Toxicologic Pathology, Vol. 63, No. 6, 2011, pp. 587-591. doi:10.1016/j.etp.2010.04.012
[26] K. Ahmad, N. F. Thomas, A. H. Hadi, M. R. Mukhtar, K. Mohamad, M. A. Nafiah, K. Takeya, H. Morita, M. Litaudon, H. Arai and K. Awang, “Oppositinines A and B: New Vasorelaxant Beta-Carboline Alkaloids from Neisosperma oppositifolia,” Chemical and Pharmaceutical Bulletin, Vol. 58, No. 8, 2010, pp. 1085-1087. doi:10.1248/cpb.58.1085
[27] P. Muthumani, S. Venkatraman, K. V. Ramseshu, R. Meera, P. Devi and B. Kameswari, “Pharmacological Studies of Anticancer, Anti-Inflammatory Activities of Murraya koenigii (Linn) Spreng in Experimental Animals,” Journal of Pharmaceutical Science & Research, Vol. 1, No. 3, 2009, pp. 137-141.
[28] S. Mandal, A. Nayak, M. Kar, S. K. Banerjee, A. Das, S. N. Upadhyay, R. K. Singh, A. Banerji and J. Banerji, “Antidiarrhoeal Activity of Carbazole Alkaloids from Murraya koenigii Spreng (Rutaceae) Seeds,” Fitoterapia, Vol. 81, No. 1, 2010, pp. 72-74. doi:10.1016/j.fitote.2009.08.016
[29] S. K. Prasad, A. Kulshreshtha and T. N. Qureshi, “Antidiabetic Activity of Some Herbal Plants in Streptozotocin Induced Diabetic Albino Rats,” Pakistan Journal of Nutrition, Vol. 8, No. 5, 2009, pp. 551-557. doi:10.3923/pjn.2009.551.557
[30] S. Parmar, A. Gangwal and N. Shethh, “Evaluation of Anti-Asthmatic Activity of a Polyherbal Formation Containing Four Plant Extracts,” Journal of Current Pharmaceutical Research, Vol. 2, No. 1, 2010, pp. 40-44.
[31] G. Bringmann, A. Ledermann, J. Holenz, M. T. Kao, U. Busse, H. G. Wu and G. Fran?ois, “Antiplasmodial Activity of Mono- and Dimeric Carbazoles,” Planta Medica, Vol. 64, No. 1, 1998, pp. 54-57. doi:10.1055/s-2006-957366
[32] T. K. Khuntia and D. S. Panda, “Evaluation of Antibacterial, Antifungal and Anthelmintic Activity of Murraya koenigii Spreng,” Pharma Science Monitor, Vol. 2, No. 2, 2011, pp. 105-110.
[33] C. B. Cui, S. Y. Yan, B. Cai and X. S. Yao, “Carbazole Alkaloids as New Cell Cycle Inhibitor and Apoptosis Inducers from Clausena dunniana Levl,” Journal of Asian Natural Products Research, Vol. 4, No. 4, 2002, pp. 233-241. doi:10.1080/1028602021000049041
[34] C. Ma, R. J. Case, Y. Wang, H. J. Zhang, G. T. Tan, N. Van Hung, N. M. Cuong, S .G. Franzblau, D. D. Soejarto, H. H. Fong and G. F. Pauli, “Anti-Tuberculosis Constituents from the Stem Bark of Micromelum hirsutum,” Planta Medica, Vol. 71, No. 3, 2005, pp. 261-267. doi:10.1055/s-2005-837826
[35] M. Gilliet and R. Lande, “Antimicrobial Peptides and Self-DNA in Autoimmune Skin Inflammation,” Current Opinion in Immunology, Vol. 20, No. 4, 2008, pp. 401-407. doi:10.1016/j.coi.2008.06.008
[36] O. Takeuchi and S. Akira, “Toll-Like Receptors; Their Physiological Role and Signal Transduction System,” International Immunopharmacology, Vol. 1, No. 4, 2001, pp. 625-635.
[37] L. C. Chang, L. T. Tsao, C. S. Chang, C. J. Chen, L. J. Huang, S. C. Kuo, R. H. Lin and J. P. Wang, “Inhibition of Nitric Oxide Production by the Carbazole Compound LCY-2-CHO via Blockade of Activator Protein-1 and CCAAT/Enhancer-Binding Protein Activation in Microglia,” Biochemical Pharmacology, Vol. 76, No. 4, 2008, pp. 507-519. doi:10.1016/j.bcp.2008.06.002
[38] F. M. Ho, C. C. Lai, L. J. Huang, T. C. Kuo, C. M. Chao and W. W. Lin, “The Anti-Inflammatory Carbazole, LCY-2-CHO, Inhibits Lipopolysaccharide-Induced Inflammatory Mediator Expression through Inhibition of the p38 Mitogen-Activated Protein Kinase Signaling Pathway in Macrophages,” British Journal of Pharmacology, Vol. 141, No. 6, 2004, pp. 1037-1047. doi:10.1038/sj.bjp.0705700

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.