Development of Niobium Oxide Coatings on Sand-Blasted Titanium Alloy Dental Implants


The purpose of this study was to use scanning electron microscopy (SEM) evaluation to determine the optimal anodizetion conditions needed to generate niobium oxide coatings on titanium alloy dental implant screws. Sand-blasted titanium alloy dental implants were anodized in dilute hydrofluoric acid (HF(aq)) solution using a Sorensen DLM 300-2 power supply. The HF concentration and anodization time were varied and the resulting implant surfaces were evaluated using a Jeol JSM-5310LV Scanning Electron Microscope to determine the ideal anodization conditions. While HF is necessary to facilitate oxide growth, increasing concentrations resulted in proportionate increases in coating delamination. In a similar manner, a minimum anodization time of 1 hour was necessary for oxide growth but longer times produced more delamination especially at higher HF(aq) concentrations. SEM imaging showed that implants anodized for 1 hour in a 0.1% HF(aq) aqueous solution had the best results. Anodization can be used to generate niobium oxide coatings on sand-blasted Ti alloy dental implants by balancing the competing factors of oxide growth and coating delamination. It is believed that these oxide coatings have the potential to improve osseointegration relative to untreated dental implants when evaluated in an in vivo study.

Share and Cite:

A. C. Mackey, R. L. Karlinsey, T. G. Chu, M. MacPherson and D. L. Alge, "Development of Niobium Oxide Coatings on Sand-Blasted Titanium Alloy Dental Implants," Materials Sciences and Applications, Vol. 3 No. 5, 2012, pp. 301-305. doi: 10.4236/msa.2012.35044.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] L. Le Guéhennec, A. Soueidan, P. Layrolle and Y. Amouriq, “Surface Treatments of Titanium Dental Implants for Rapid Osseointegration,” Dental Materials, Vol. 23, No. 7, 2007, pp. 844-854. doi:10.1016/
[2] C.C. Montes, F.A. Pereira, G. Thome, et al. “Failing Factors Associated with Osseointegrated Dental Implant Loss,” Implant Dentistry, Vol. 16, No. 4, 2007, pp. 404-408. doi:10.1097/ID.0b013e31815c8d31
[3] R. Junker, A. Dimakis, M. Thoneick and J. Jansen, “Effects of Implant Surface Coatings and Composition on Bone Integration: A Systematic Review,” Clinical Oral Implants Research, Vol. 20, No. S4, 2009, pp. 185-206. doi:10.1111/j.1600-0501.2009.01777.x
[4] G. Mendonca, D. B. S. Mendonca, F. J. L. Aragao and L. F. Cooper, “Advancing Dental Implant Surface Technology—From Micronto Nanotopography,” Biomaterials, Vol. 29, No. 28, 2008, pp. 3822-3835. doi:10.1016/j.biomaterials.2008.05.012
[5] P. P. Binon, “Implants and Components: Entering the New Millennium,” International Journal of Oral and Maxillofacial Implants, Vol. 15, No. 1, 2000, pp. 76-94.
[6] T. Albrektsson, P. I. Branemark, H. A. Hansson and J. Lindstrom, “Osseointegrated Titanium Implants Requirements for Ensuring a Long-Lasting, Direct Bone-to-Implant Anchorage in Man,” Acta Orthopaedica Scandinavica, Vol. 52, No. 2, 1981, pp. 155-170.
[7] C. J. Ivanoff, C. Hallgren, G. Widmark, L. Sennerby and A. Wennerberg, “Histologic Evaluation of the Bone Integration of TiO(2) Blasted and Turned Titanium Microimplants in Humans,” Clinical Oral Implants Research, Vol. 12, No. 2, 2001, pp. 128-134. doi:10.1034/j.1600-0501.2001.012002128.x
[8] K. Gotfredsen, A. Wennerberg, C. Johansson, L. T. Skovgaard and E. Hjorting-Hansen, “Anchorage of TiO2Blasted, HA-Coated, and Machined Implants: An Experimental Study with Rabbits,” Journal of Biomedical Materials Research, Vol. 29, No. 10, 1995, pp. 1223-1231. doi:10.1002/jbm.820291009
[9] L. Rasmusson, K. E. Kahnberg and A. Tan, “Effects of Implant Design and Surface on Bone Regeneration and Implant Stability: An Experimental Study in the Dog Mandible,” Clinical Implant Dentistry and Related Research, Vol. 3, No. , 2001, pp. 2-8. doi:10.1111/j.1708-8208.2001.tb00123.x
[10] K. Gotfredsen and U. Karlsson, “A Prospective 5-Year Study of Fixed Partial Prostheses Supported by Implants with Machined and TiO2-Blasted Surface,” Journal of Prosthodontics, Vol. 10, No. 1, 2001, pp. 2-7.
[11] L. Rasmusson, J. Roos and H. Bystedt, “A 10-Year Follow-Up Study of Titanium Dioxide-Blasted Implants,” Clinical Implant Dentistry and Related Research, Vol. 7, No. 1, 2005, pp. 36-42.
[12] D. van Steenberghe, G. De Mars, M. Quirynen, R. Jacobs and I. Naert, “A Prospective Split-Mouth Comparative Study of Two Screw-Shaped Self-Tapping Pure Titanium Implant Systems,” Clinical Oral Implants Research, Vol. 11, No. 3, 2000, pp. 202-209. doi:10.1034/j.1600-0501.2000.011003202.x
[13] P. Astrand, B. Engquist, S. Dahlgren, E. Engquist, H. Feldmann and K. Grondahl, “Astra Tech and Branemark System Implants: A Prospective 5-Year Comparative Study. Results after One Year,” Clinical Implant Dentistry and Related Research, Vol. 1, No. 1, 1999, pp. 17-26. doi:10.1111/j.1708-8208.1999.tb00087.x
[14] M. Esposito, L. Murray-Curtis, M. G. Grusovin, P. Coulthard and H.V. Worthington, “Interventions for replacing missing teeth: different types of dental implants,” Cochrane Database Systematic Reviews, Vol. 25, No. 1, 2007. doi:10.1002/14651858.CD003815
[15] S. Wheeler, “Eight-Year Clinical Retrospective Study of Titanium Plasma-Sprayed and Hydroxyapatite-Coated Cylinder Implants,” International Journal of Oral and Maxillofacial Implants, Vol. 11, No. 3, 1996, pp. 340-350.
[16] Y. L. Chang, D. Lew, J. B. Park and J. C. Keller, “Biomechanical and Morphometric Analysis of Hydroxyapatite-Coated Implants with Varying Crystallinity,” Journal of Oral and Maxillofacial Surgery, Vol. 57, No. 9, 1999, pp. 1096-1108. doi:10.1016/S0278-2391(99)90333-6
[17] D. Tinsley, C. Watson and J. Russell, “A Comparison of Hydroxylapatite Coated Implant Retained Fixed and ReMovable Mandibular Prostheses over 4 to 6 Years,” Clinical Oral Implants Research, Vol. 12, No. 2, 2001, pp. 159-166. doi:10.1034/j.1600-0501.2001.012002159.x
[18] J. Lee, L. Rouhfar and O. Beirne, “Survival of Hydroxyapatite-Coated Implants: A Meta-Analytic Review,” Journal of Oral and Maxillofacial Surgery, Vol. 58, No. 2, 2000, pp. 1372-1379. doi:10.1053/joms.2000.18269
[19] T. Kokubo, H. M. Kim and M. Kawashita, “Novel Bioactive Materials with Different Mechanical Properties,” Biomaterials, Vol. 24, No. 13, 2003, pp. 2161-2175. doi:10.1016/S0142-9612(03)00044-9
[20] R. L. Karlinsey, K. Yi and C.W. Duhn, “Nucleation and Growth of Apatite by a Self-Assembled Polycrystalline Bioceramic,” Bioinspiration & Biomimetics, Vol. 1, No. 1, 2006, pp. 12-19. doi:10.1088/1748-3182/1/1/002
[21] R. L. Karlinsey, A. T. Hara, K. Yi and C. W. Duhn, “BioActivity of Novel Self-Assembled Crystalline Nb2O5 Microstructures in Simulated and Human Salivas,” Biomedical Materials, Vol. 1, No. 1, 2006, pp. 16-23. doi:10.1088/1748-6041/1/1/003
[22] R. L. Karlinsey and K. Yi, “Self-Assembly and Bioactive Response of a Crystalline Metal Oxide in a Simulated Blood Fluid,” Journal of Materials Science: Materials in Medicine, Vol. 19, No. 3, 2007, pp. 1349-1354. doi:10.1007/s10856-007-3164-9
[23] A. Mackey, R. L. Karlinsey, A. Chern and T. G. Chu, “The Growth Kinetics and in Vitro Biocompatibility of Nb2O5 Microcones,” International Journal of Medical Engineering and Informatics, Vol. 2, No. 3, 2010, pp. 247-260. doi:10.1504/IJMEI.2010.035218
[24] A. C. Mackey, R. L. Karlinsey, T. G. Chu and D. Alge, “Optimized Anodization Conditions for Niobium-Coated Titanium-Alloy Implant Screws,” Journal of Dental Research, Vol. 90, Special Issue, 2011, p. 608.
[25] R. L. Karlinsey, “Self-Assembled Nb2O5 Microcones with Tailored Crystallinity,” Journal of Materials Science, Vol. 41, No. 15, 2006, pp. 5017-5020. doi:10.1007/s10853-006-0135-3
[26] I. Sieber, H. Hildebrand, A. Friedrich and P. Schmuki, “Formation of Self-Organized Niobium Porous Oxide on Niobium,” Electrochemistry Communications, Vol. 7, No. 1, 2005, pp. 97-100. doi:10.1016/j.elecom.2004.11.012
[27] R. L. Karlinsey, “Preparation of Self-Organized Niobium Oxide Microstructures via Potentiostatic Anodization,” Electrochemistry Communications, Vol. 7, No. 12, 2005, pp. 1190-1194. doi:10.1016/j.elecom.2005.08.027
[28] J. Halbritter, “On the Oxidation and on the Superconductivity of Niobium,” Applied Physics A, Vol. 43, No. 1, 1987, pp. 1-28. doi:10.1007/BF00615201

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.