Experimental Investigation of Surface Plasmon Resonance Using Tapered Cylindrical Light Guides with Metal-Dielectric Interface


In this paper we report an experimental investigation on the observation of surface plasmon resonance at the metal- dielectric interface of silver coated tapered light guiding glass rods of different dimensions. Chemical deposition technique has been used for metallic deposition of silver on the Tapered glass rod. Angular interrogation in Kretschmann- like configuration of this non-planar (cylindrical) structure is used to locate the resonance dip in the reflectance mea- surement. Fabrication simplicity, in addition to the inherent advantage of using different types of tapered structures, makes this study important in the development of nanoplasmonics. The experimental study is accompanied by some interesting results.

Share and Cite:

S. Ghosh, K. Brahmachari and M. Ray, "Experimental Investigation of Surface Plasmon Resonance Using Tapered Cylindrical Light Guides with Metal-Dielectric Interface," Journal of Sensor Technology, Vol. 2 No. 1, 2012, pp. 48-54. doi: 10.4236/jst.2012.21007.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] L. Novotony and B. Hecht, “Principles of Nano-Optics,” Cambridge University Press Publishing, Cambridge, 2006.
[2] C.-W. Linn, K.-P. Chen, M.-C. Su, C.-K. Lee and C.-C. Yang, “Bio-Plasmonics: Nano/Micro Structure of Surface Plasmon Resonance Devices for Biomedicine,” Optical and Quantum Electronics, Vol. 37, No. 13-15, 2005, pp. 1423-1437. doi:10.1007/s11082-005-4222-5
[3] H. Raether and E. Kretschmann, “Radiative Decay of Non-Radiative Surface Plasmons Excited by Light,” Zeitschrift Für Naturforschung, Vol. 23, No. 12, 1968, pp. 2135-2136.
[4] A. Otto, “Excitation of Surface Plasma Waves in Silver by the Method of Frustrated Total Reflection,” Zeitschrift Für Physik a Hadrons and Nuclei, Vol. 216, No. 4, 1968, pp. 398-410. doi:10.1007/BF01391532
[5] B. Liedberg, C. Nylander and I. Sundstrom, “Surface Plasmon Resonance for Gas Detection and Biosensing,” Sensors and Actuators, Vol. 4, 1983, pp. 299-304. doi:10.1016/0250-6874(83)85036-7
[6] W.-C. Kuo, C. Chou and H.-T. Wu, “Optical Heterodyne Surface-Plasmon Resonance Biosensor,” Optical Letters, Vol. 28, No. 15, 2003, pp. 1329-1331. doi:10.1364/OL.28.001329
[7] S. K. Srivastava, R. K. Verma and B. D. Gupta, “Theoretical Modeling of a Localized Surface Plasmon Resonance Based Intensity Modulated Fiber Optic Refractive Index Sensor,” Applied Optics, Vol. 48, No. 19, 2009, pp. 3796-3802. doi:10.1364/AO.48.003796
[8] B. D. Gupta and R. K. Verma, “Surface Plasmon Resonance-Based Fiber Optic Sensors: Principle, Probe Designs, and Some Applications,” Journal of Sensors, Vol. 2009, Article ID 979761. doi:10.1155/2009/979761
[9] Y. S. Dwivedi, A. K. Sharma and B. D. Gupta, “Influence of Design Parameters on the Performance of a Surface Plasmon Sensor Based Fiber Optic Sensor,” Plasmonics, Vol. 3, No. 2-3, 2008, pp. 79-86. doi:10.1007/s11468-008-9057-z
[10] R. K. Verma, A. K. Sharma and B. D. Gupta, “Surface Plasmon Resonance Based Tapered Fiber Optic Sensor with Different Taper Profiles,” Optics Communications, Vol. 281, No. 6, 2008, pp. 1486-1491. doi:10.1016/j.optcom.2007.11.007
[11] R. Jha, R. K. Verma and B. D. Gupta, “Surface Plasmon Resonance-Based Tapered Fiber Optic Sensor: Sensitivity Enhancement by Introducing a Teflon Layer between Core and Metal Layer,” Plasmonics, Vol. 3, 2008, pp. 151-156. doi:10.1007/s11468-008-9058-y
[12] Y. X. A. Cottenden and N. B. Jones, “A Theoretical Evaluation of Fiber-Optic Evanescent Wave Absorption in Spectroscopy and Sensors,” Optics and Lasers in Engineering, Vol. 44, No. 2, 2006, pp. 93-101. doi:10.1016/j.optlaseng.2005.05.003
[13] S.-F. Wang, M.-H. Chiu and R.-S. Chang, “New Idea for a D-Type Optical Fiber Sensor Based on Kretschmann’s Configuration,” Optical Engineering, Vol. 44, No. 3, 2005, pp. 1-2. doi:10.1117/1.1869515
[14] M. Bera and M. Ray, “Precise Detection and Signature of Biological/Chemical Samples Based on Surface Plasmon Resonance (SPR),” Journal of Optics, Vol. 38, No. 4, 2009, pp. 232-248. doi:10.1007/s12596-009-0021-x
[15] M. Bera and M. Ray, “Multi-Layer Thin Film Modeling for Observation of Coupled Waveguide-Surface Plasmon Resonance,” International Symposium on Advances in Nanomaterials (ANM2010), Kolkata, 6-7 December 2010.
[16] K. Bramhachari, S. Ghosh and M. Ray, “Application of Admittance Loci Method in Surface Plasmon Resonance Technology for Sensing of Different Chemical and Biological Samples,” International conference on Specialty Glass & Optical Fiber: Materials, Technology & Devices, Kolkata, India, 4-6 August 2011.
[17] K. Bramhachari, S. Ghosh and M. Ray, “Experimental Observation of Surface Plasmon Resonance Using Various Geometrical Configurations of Metal-Dielectric Interface,” International Symposium on Advances in Nano- materials, Kolkata, India, 6-7 December 2010 .
[18] S. Ghosh, K. Brahmachari and M. Ray, “Experimental Investigation of Surface Plasmon Resonance Using a Chemically Deposited Silver Film on a Tapered Cylindrical Glass Rod,” International conference on Speciality Glass & Optical Fiber: Materials, Technology & Devices, Kolkata, India, 4-6 August 2011.
[19] D. S. Smith, R. S. Sathish, Y. Kostov and G. Rao, “Solution Deposition of Nanometer Scale Silver Films as an Alternative to Vapor Deposition for Plasmonic Excitation,” Thin Solid Films, Vol. 518, No. 14, 2010, pp. 3772- 3777. doi:10.1016/j.tsf.2009.12.090
[20] J. Boehm, A. Francois, H. Ebendroff-Heidopriem and T. M. Monro, “Chemical Deposition of Silver for the Fabrication of Surface Plasmon Micro Structured Optical Fiber Sensors,” Plasmonics, Vol. 6, No. 1, 2011, pp. 133-136. doi:10.1007/s11468-010-9178-z

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.