Importance of CO2 Emissions in Construction Phase. Two Case Studies: New Construction and Renovated Building


With the new Technical Code for Construction and Energy Certification (application of the EPBD in Spain) energy consumption and carbon dioxide emissions are now taken into consideration during building’s operating phase. There is no doubt that this is a step forward. However, economic cost and emissions involved in extracting materials, manufacture, transport and installing on site (embodied energy in the materials used in construction) can be considerable and even more when promotor seeks to improve the building’s energy rating with the corresponding increases in insulation, improvements in cladding and so on. Two case studies are used (new construction and renovation) in order to analyze both economic cost and CO2 emissions in construction and operating stage (using LIDER and CALENER softwares) of two actual cases.

Share and Cite:

Fernandez-Sanchez, G. and Rodriguez-Lopez, F. (2012) Importance of CO2 Emissions in Construction Phase. Two Case Studies: New Construction and Renovated Building. Low Carbon Economy, 3, 11-15. doi: 10.4236/lce.2012.31002.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] X. G. Casals, “Analysis of Building Energy Regulation and Certification in Europe: Their Role, Limitations and Differences,” Energy and Buildings, Vol. 138, No. 5, 2006, pp. 381-392. doi:10.1016/j.enbuild.2005.05.004
[2] A. Z.-Z. Szalay, “What Is Missing from the Concept of the New European Building Directive?” Building and Environment, Vol. 42, No. 4, 2007, pp. 1761-1769. doi:10.1016/j.buildenv.2005.12.003
[3] I. Oteiza and J. A. Tenorio, “La Innovación en las Técnicas, los Sistemas y los Materiales de Construcción,” Jornada 7: Evaluación de la sostenibilidad en la edificación, XVII Edición Curso de Estudios Mayores de la Construcción (CEMCO), Madrid, 8 Febrero al 22 de Junio de 2007.
[4] N. Huberman and D. Pearlmutter, “A Life-Cycle Energy Analysis of Building Materials in the Negev Desert,” Energy and Buildings, Vol. 40, No. 5, 2008, pp.837-848. doi:10.1016/j.enbuild.2007.06.002
[5] RAIA, “Towards a National Framework for Energy Efficiency—Issues and Challenges,” The Royal Australian Institute of Architects (RAIA), Tusculum, 2004.
[6] T. Mumma, “Reducing the Embodied Energy of Buildings,” Home Energy Magazine, Vol. 12, No. 1, 1995, pp. 9-12.
[7] R. Cole and P. C. Kernan, “Life-Cycle Energy Use in Office Buildings,” Building and Environment, Vol. 31, No. 4, 1996, pp. 307-317. doi:10.1016/0360-1323(96)00017-0
[8] C. Thormark, “A Low Energy Building in a Life Cycle—Its Embodied Energy, Energy Need for Operation and Recycling Potential,” Building and Environment, Vol. 37, No. 4, 2002, pp. 429-435. doi:10.1016/S0360-1323(01)00033-6
[9] F. M. Samper and F. R. R. de Gopegui, “Oportunidades para las Ingenierías ante el RD 47/2007 de Eficiencia Energética,” V Congreso Nacional de Ingeniería Civil: Desarrollo y Sostenibilidad en el Marco de la Ingeniería, Sevilla, 2007.
[10] Institut de Tecnología de la Construcció de Catalunya, “Base de datos Banco BEDEC PR/PCT”, 2009.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.