Effects of Fiber Weight Ratio, Structure and Fiber Modification onto Flexural Properties of Luffa-Polyester Composites
Lassaad Ghali, Slah Msahli, Mondher Zidi, Faouzi Sakli
DOI: 10.4236/ampc.2011.13013   PDF    HTML     7,386 Downloads   15,986 Views   Citations


The effect of chemical modification, reinforcement structure and fiber weight ratio on the flexural proprieties of Luffa-polyester composites was studied. A unsaturated polyester matrix reinforced with a mat of Luffa external wall fibers (ComLEMat), a short Luffa external wall fibers(ComLEBC) and a short Luffa core fi-bers (ComLCBC) was fabricated under various conditions of fibers treatments (combined process, acetylat-ing and cyanoethylating) and fiber weight ratio. It resorts that acetylating and cyanoethylating enhance the flexural strength and the flexural modulus. The fiber weight ratio influenced the flexural properties of com-posites. Indeed, a maximum value of strength and strain is observed over a 10% fiber weight ratio. The uses of various reinforcement structures were investigated. The enhancement of elongation at break and the strain values of the composite reinforced by natural mat was proved.

Share and Cite:

Ghali, L. , Msahli, S. , Zidi, M. and Sakli, F. (2011) Effects of Fiber Weight Ratio, Structure and Fiber Modification onto Flexural Properties of Luffa-Polyester Composites. Advances in Materials Physics and Chemistry, 1, 78-85. doi: 10.4236/ampc.2011.13013.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] A. K. Bledzki and J. Gassan, “Composites Reinforced with Cellulose Based Fibres,” Progress in Polymer Science, Vol. 24, No. 2, 1999, pp. 221-274. doi:10.1016/S0079-6700(98)00018-5
[2] P. J. Herrara-Franco and A. Valadez-Gonzalez, “Mechanical Properties of Continuous Natural Fibre-Rein- forced Polymer Composites,” Composites Part A: Applied Science and Manufacturing, Vol. 35, No. 3, 2004, pp. 339-345. doi:10.1016/j.compositesa.2003.09.012
[3] L. Medina, R. Schledjewski and A. K. Schlarb, “Process Related Mechanical Properties of Press Molded Natural Fiber Reinforced Polymers,” Composites Science and Technology, Vol. 69, No. 9, 2009, pp. 1404-1411. doi:10.1016/j.compscitech.2008.09.017
[4] D. Nabi and J. P. Jog, “Natural Fiber Polymer Composites: A Review,” Advances in Polymer Technology, Vol. 18, No. 4, 1999, pp. 351-363. doi:10.1002/(SICI)1098-2329(199924)18:4<351::AID-ADV6>3.0.CO;2-X
[5] A. K. Saha, S. Das, D. Bhatta and B. C. Mitra, “Studies of Jute Fiber Reinforced Polyester Composites by Dynamic Mechanical Analysis,” Journal of Applied Polymer Science, Vol. 71, No. 9, 1999, pp. 1505-1513. doi:10.1002/(SICI)1097-4628(19990228)71:9<1505::AID-APP15>3.0.CO;2-1
[6] A. K. Saha, S. Das, R. K. Basak, D. Bhatta and B. C. Mitra, “Improvement of Functional Proprieties of Jute Based Composite by Acrylonitrile Pretraitement,” Journal of Applied Polymer Science, Vol. 78, No. 3, 2000, pp. 495-506. doi:10.1002/1097-4628(20001017)78:3<495::AID-APP30>3.0.CO;2-M
[7] A. Bessadok, S. Marais, F. Gouanve, L. Colasse, I. Zimmerlin, S. Roudesli and M. Me’tayer, “Effect of Chemical Treatments of Alfa (Stipa Tenacissima) Fibres on Water-Sorption Properties,” Composites Science and Technology, Vol. 67, No. 3-4, 2007, pp. 685-697. doi:10.1016/j.compscitech.2006.04.013
[8] V. Tserki, N. E. Zafeiropoulos, F. Simon and C. Panayiotou, “A Study of the Effect of Acetylation and Propionylation Surface Treatments on Natural Fibres,” Composites Part A: Applied Science and Manufacturing, Vol. 36, No. 8, 2005, pp. 1110-1118. doi:10.1016/j.compositesa.2005.01.004
[9] H. P. S. A. Khalil, H. Ismail, H. D. Rozman and M. N. Ahmad, “The Effect of Acetylation on Interfacial Shear Strength between Plant Fibres and Various Matrices,” European Polymer Journal, Vol. 37, No. 5, 2001, pp. 1037-1045. doi:10.1016/S0014-3057(00)00199-3
[10] M. J. John and R. D. Anandjiwala, “Recent Developments in Chemical Modification and Characterization of Natural Fiber-Reinforced Composites,” Polymer Composites, Vol. 29, No. 2, 2008, pp. 187-207. doi:10.1002/pc.20461.
[11] C. A. Boynard, S. N. Monteiro and J. R. M. D’Almeida, “Aspects of Alkali Treatment of Sponge Gourd (Luffa Cylindrica) Fibers on the Flexural Properties of Polyester Matrix Composites,” Journal of Applied Polymer Science, Vol. 87, No. 12, 2003, pp. 1927-1932. doi:10.1002/app.11522
[12] P. N. Khanam, H. P. S. A. Khalil, G. R. Reddy and S. V. Naidu, “Tensile, Flexural and Chemical Resistance Properties of Sisal Fibre Reinforced Polymer Composites: Effect of Fibre Surface Treatment,” Journal of Polymers and the Environment, Vol. 19, No. 1, 2011, pp. 115-119. doi:10.1007/s10924-010-0219-7
[13] Y. Cao, S. Shibata and I. Fukumoto, “Mechanical Properties of Biodegradable Composites Reinforced with Bagasse Fibre before and after Alkali Treatments,” Composites Part A: Applied Science and Manufacturing, Vol. 37, No. 3, 2006, pp. 423-429. doi:10.1016/j.compositesa.2005.05.045
[14] M. Das and D. Chakraborty, “Influence of Alkali Treatment on the Fine Structure and Morphology of Bamboo Fibers,” Journal of Applied Polymer Science, Vol. 102, No. 5, 2006, pp. 5050-5056. doi:10.1002/app.25105.
[15] K. M. M. Rao, K. M. Rao and A.V. R. Prasad, “Fabrication and Testing of Natural Fibre Composites: Vakka, Sisal, Bamboo and Banana,” Materials and Design, Vol. 31, No. 1, 2010, pp. 508-513. doi:10.1016/j.matdes.2009.06.023
[16] A. Nourbakhsh and A. Ashori, “Fundamental Studies on Wood-Plastic Composites: Effects of Fiber Concentration and Mixing Temperature on the Mechanical Properties of Poplar/PPcomposite,” Polymer Composites, Vol. 29, No. 5, 2008, pp. 569-573. doi:10.1002/pc.20578
[17] R. C. M. P. Aquino, J. R. M. D’almeida and S. N. Monteiro, “Flexural Mechanical Properties of Piassava Fibers (Attalea Funifera)-Resin Matrix Composites,” Journal of Materials Science Letters, Vol. 20, No. 11, 2001, pp. 1017-1019. doi:10.1023/A:1010904306820
[18] M. R. Ishak, Z. Leman, S. M. Sapuan, A. M. M. Edeerozey and I. S. Othman, “Mechanical Properties of Kenaf bast and Core Fibre Reinforced Unsaturated Polyester Composites,” IOP Conference Series: Materials Science and Engineering, Vol. 11, No. 1, 2010, pp. 1-6.
[19] S. Shibata, Y. Cao and I. Fukumoto, “Effect of Bagasse Fiber on the Flexural Properties of Biodegradable Composites,” Polymer Composites, Vol. 26, No. 5, 2005, pp. 689-694. doi:10.1002/pc.20140
[20] H. Demir, A. Top, D. Balk?se and S. ülkü, “Dye Adsorption Behaviour of Luffa Cylindrica Fibres,” Journal of Hazardous Materials, Vol. 153, No. 1-2, 2008, pp. 389-394. doi:10.1016/j.jhazmat.2007.08.070
[21] V. O. A. Tanobe, T. H. D. Sydenstricker, M. Munaro and S. C. Amico, “A Comprehensive Characterization of Chemically Treated Brazilian Sponge-Gourds (Luffa Cylindrica),” Polymer Testing, Vol. 24, No. 4, 2005, pp. 474-482. doi:10.1016/j.polymertesting.2004.12.004
[22] L. Ghali, S. Msahli, M. Zidi and F. Sakli, “Effect of Pre-Treatment of Luffa Fibres on the Structural Properties,” Materials Letters, Vol. 63, No. 1, 2009, pp. 61-63. doi:10.1016/j.matlet.2008.09.008
[23] A. K. Saha and B. C. Mitra, “Studies on Cyanoethylation of Jute Fibre,” Journal of Applied Polymer Science, Vol. 62, No. 5, 1996, pp. 733-742. doi:10.1002/(SICI)1097-4628(19961031)62:5<733::AID-APP3>3.0.CO;2-X
[24] Y. Z. Wan, Y. L. Wang, H. L. Luo, X. H. Dong and G. X. Cheng, “Effects of Fiber Volume Fraction, Hot Pressing Parameters and Alloying Elements on Tensile Strength of Carbon Fiber Reinforced Copper Matrix Composite Prepared by Continuous Three-Step Electro Deposition,” Materials Science and Engineering A, Vol. 288, No. 1, 2000, pp. 26-33. doi:10.1016/S0921-5093(00)00887-X

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.