On the Pólya Enumeration Theorem ()
Abstract
Simple formulas for the number of different cyclic and dihedral necklaces containing nj beads of the j-th color, and , are derived, using the Pólya enumeration theorem.
Share and Cite:
FEL, L. (2009) On the Pólya Enumeration Theorem.
Intelligent Information Management,
1, 172-173. doi:
10.4236/iim.2009.13025.
Conflicts of Interest
The authors declare no conflicts of interest.
References
[1]
|
G. Pólya, “Kombinatorische anzahlbestimmungen für Gruppen, Graphen, und chemische Verbindungen,” Acta Math., Vol. 68, pp. 145–254, 1937.
|
[2]
|
F. Harary and E. M. Palmer, “Graphical enumeration,” Academic Press, New York, 1973.
|
[3]
|
J. J. Rotman, “An introduction to the theory of groups,” Boston, Mass., Allyn and Bacon, Chapter 3, 1984.
|
[4]
|
G. Polya and R. C. Read, “Combinatorial enumeration of groups, graphs, and chemical compounds,” Springer, New York, 1987.
|
[5]
|
F. Harary, “Graph theory,” Reading, Addison-Wesley, MA, 1994.
|
[6]
|
A. Kerber, “Applied finite group actions,” 2nd Ed., Springer, Berlin, Chap. 3, 1999.
|