[1]
|
E. Schr?dinger, “Quantization as an Eigenvalue Problem III,” Annalen der Physik, Vol. 80, 1926, pp. 437-490.
|
[2]
|
P. M. Morse and H. Feshbach, “Methods of Theoretical Physics, Part 2,” McGraw-Hill, New York, 1953.
|
[3]
|
N. H. March, W. H. Young and S. Sampanthar, “The Many-Body Problem in Quantum Mechanics,” Cambridge University Press, Cambridge, 1967.
|
[4]
|
R. D. Mattuck, “A Guide to Feynman Diagrams in the Many-Body Problem,” 2nd Edition, McGraw-Hill, New York, 1976.
|
[5]
|
J. Killingbeck, “Quantum-Mechanical Perturbation Theory,” Reports on Progress in Physics, Vol. 40, No. 9, 1977, pp. 963-1031. doi:10.1088/0034-4885/40/9/001
|
[6]
|
P. O. L?wdin, “Proceedings of the International Workshop on Perturbation Theory of Large Order,” International Journal of Quantum Chemistry, Vol. 21, 1982, pp. 1-353.
|
[7]
|
G. A. Arteca, F. M. Fernandez and E. A. Castro, “Large Order Perturbation Theory and Summation Methods in Quantum Mechanics,” Springer, Berlin, 1990.
|
[8]
|
J. C. Le Guillou and J. Zinn-Justin, “Large-Order Behaviour of Perturbation Theory,” North-Holland, Amsterdam, 1990.
|
[9]
|
R. P. Feynman, “The Theory of Positrons,” Physical Review, Vol. 76, No. 6, 1949, pp. 749-759.
doi:10.1103/PhysRev.76.749
|
[10]
|
R. Huby, “Formulae for Rayleigh-Schr?dinger Perturbation Theory in Any Order,” Proceedings of the Physical Societ, London, Vol. 78, 1961, pp. 529-536.
|
[11]
|
B. Y. Tong, “On Huby’s Rules for Non-Degenerate Ray- leigh-Schrodinger Perturbation Theory in Any Order,” Proceedings of the Physical Society, London, Vol. 80, 1962, pp. 1101-1104.
|
[12]
|
S. Olszewski, “Time Scale and Its Application in the Perturbation Theory,” Zeitschrift fur Naturforschung A, Vol. 46, 1991, pp. 313-320.
|
[13]
|
S. Olszewski, “Time Topology for Some Classical and Quantum Non-Relativistic Systems,” Studia Philosophiae Christianae, Vol. 28, 1992, pp. 119-135.
|
[14]
|
S. Olszewski and T. Kwiatkowski, “A Topological Approach to Evaluation of Non-Degenerate Schrodinger Per- turbation Energy Based on a Circular Scale of Time,” Computation Chemistry, Vol. 22, No. 6, 1998, pp. 445- 461. doi:10.1016/S0097-8485(98)00023-0
|
[15]
|
S. Olszewski, “Two Pathways of the Time Parameter Characteristic for the Perturbation Problem in Quantum Chemistry,” Trends in Physical Chemistry, Vol. 9, 2003, pp. 69-101.
|
[16]
|
S. Olszewski, “Combinatorial Analysis of the Rayleigh- Schrodinger Perturbation Theory Based on a Circular Scale of Time,” International Journal of Quantum Chemistry, Vol. 97, No. 3, 2004, pp. 784-801.
doi:10.1002/qua.10776
|