Advances in Somatic Embryogenesis Research of Horticultural Plants
Aiqing Ji, Xueqing Geng, Yan Zhang, Guoliang Wu
DOI: 10.4236/ajps.2011.26087   PDF    HTML     9,325 Downloads   18,356 Views   Citations


Advances in horticulture plant biotechnologies provide new opportunities for researchers to study the field of vegetative propagation and genetic engineering. Developments of clonal propagation methods, especially somatic embryogenesis (SE), have numerous potential applications. This paper reviewed progress of research on SE in horticultural plants in last decade; analyzed plant regeneration having both direct and indirect SE from the characteristics of occurrence means, but mainly in an indirect way; and discussed the impact factors of SE, as well as reviewed the research in the practical applications of horticulture plants SE in the practice.

Share and Cite:

Ji, A. , Geng, X. , Zhang, Y. and Wu, G. (2011) Advances in Somatic Embryogenesis Research of Horticultural Plants. American Journal of Plant Sciences, 2, 727-732. doi: 10.4236/ajps.2011.26087.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] K. R. Cui and R. L. Dai, “Molecular Biology of Plant Somatic Embryogenesis,” Science Press, Beijing, 2000, pp. 48-54.
[2] Y. J. Chen and Z. X. Lai, “Researches and Utilization of Somatic Embryogenesis in Fruits and Trees,” Journal of Fujian Agricultural University, Vol. 30, No. 3, 2001, pp. 420-426.
[3] X. L. Huang and Y. J. Li, “Morphogenesis and Regulation of Higher Plant Organ Culture in Vitro,” Science Press, Beijing, 1995, pp. 46-72.
[4] G. H. Yan and Y. Zhou, “Plant Regeneration from Excised Immaturate Embryos of Peach (Prunus persica L.),” Acta Horticulturae Sinica, Vol. 29, No. 5, 2002, pp. 480-482.
[5] G. March, E. Grenier, N. Miannay, G. Sulmont, H. David and A. David, “Potential of Somatic Embryogenesis in Prunus avium Immature Zygotic Embryos,” Plant Cell, Tissue and Organ Culture, Vol. 34, 1993, pp. 209-215. doi:10.1007/BF00036104
[6] K. D. Da, S. Zhang, Y. Z. Li and Z. J. Qi, “Direct Somatic Embryogenesis from in Vitro Leaves of Apple,” Acta Horticulturae Sinica, Vol. 23, No. 3, 1996, pp. 241-245.
[7] C. L. Zhang, D. F. Chen, M. Kubalakova, J. Zhang, N. W. Scott, M. C. Elliott and A. Slater, “Efficient Somatic Embryogenesis in Sugar Beet (Beta vulgaris L.) Breeding Lines,” Plant Cell, Tissue and Organ Culture, Vol. 93, 2008, pp. 209-221. doi:10.1007/s11240-008-9364-2
[8] Q. R. Sun, Q. Z. Liu and R. H. Zhao, “Somatic Embryo Genesis from in Vitro Leaves of Pear,” Acta Horticulturae Sinica, Vol. 30, No. 1, 2003, pp. 85-86.
[9] A. K. A. Mandal and S. K. Datta, “Direct Somatic Embryogenesis and Plant Regeneration from Ray Florets of Chrysanthemum,” Biologia Plantarum, Vol. 49, No. 1, 2005, pp. 29-3311. doi:10.1007/s10535-005-0033-6
[10] X. M. Liu, P. H. Zhou, S. C. Qu, X. Y. Lu and Z. M. Luo, “In Vitro Induction of Indefinite Bubs and Somatic Embryos from Scale Leave of Tetraploid ‘Longya Lily’,” Acta Horticulturae Sinica, Vol. 24, No. 4, 1997, p. 353.
[11] A. Yantcheva, M. Vlahova and A. Antanassov, “Direct Somatic Embryogenesis and Plant Regeneration of Carnation (Dianthus caryophyllus L.),” Plant Cell Reports, Vol. 18, 1998, pp. 143-153. doi:10.1007/s002990050548
[12] X. M. Liu, P. H. Zhou, S. C. Qu, X. Y. Lu and Z. M. Luo, “In Vitro Induction of Indefinite Bubs and Somatic Embryos from Scale Leave of Tetraploid ‘Longya Lily’,” Acta Horticulturae Sinica, Vol. 24, No. 4, 1997, p. 353.
[13] G. H. Ma and N. Liu, “Direct Somatic Embryogenesis and Shoot Formation from Cultured Young Leaf of Kalanchoe blossfeldiana,” Plant Physiology Communications, Vol. 39, No. 6, 2003, p. 625.
[14] W. P. Gow, J. T. Chen and W. C. Chang, “Effects of Genotype, Light Regime, Explant Position and Orientation on Direct Somatic Embryogenesis from Leaf Explants of Alaenopsis Orchid,” Acta Physiologiae Plantarum, Vol. 31, No. 2, 2009, pp. 263-269. doi:10.1007/s11738-008-0243-6
[15] M. Rivera-Domínguez, M. A. Manzanilla-Ramírez, M. Robles-González and M. A. Gómez-Lim, “Induction of Somatic Embryogenesis and Plant Regeneration of ‘Ataulfo’ Mango (Mangifera indica),” Plant Cell, Tissue and Organ Culture, Vol. 79, No. 1, 2004, pp. 101-104.
[16] A. Grapin, J. Schwendiman and C. Teisson, “Somatic Embryogenesis in Plantain Banana,” In Vitro Cellular & Developmental Biology—Plant, Vol. 32, No. 2, 1996, pp. 66-71. doi:10.1007/BF02823133
[17] C. Robacher, “Somatic Embryogenesis and Plant Regeneration from Muscadine Grape Leaf Explant,” Hort Science, Vol. 28, No. 1, 1993, pp. 53-55.
[18] L. Fereol, V. Chovelon and S. Causse, “Evidence of a Somatic Embryogenesis Process for Plant Regeneration in Garlic (Allium sativum L.),” Plant Cell Reports, Vol. 21, No. 3, 2002, pp. 197-203. doi:10.1007/s00299-002-0498-0
[19] K. M. S. Elmeer and M. J. Hennerty, “Observations on the Combined Effects of Light, NAA and 2,4-D on Somaticembryogenesis of Cucumber (Cucumis sativus) Hybrids,” Plant Cell, Tissue and Organ Culture, Vol. 95, No. 3, 2008, pp. 381-384. doi:10.1007/s11240-008-9439-0
[20] L. P. Chen, B. L. Wang and M. F. Chen, “Studies on Somatic Embryogenesis of Euphorbia pulcherrima in Vitro Culture,” Plant Physiology Communications, Vol. 35, No. 6, 1999, pp. 463-465.
[21] J. J. Zamorano-Mendoza and J. M. Mejia-Munoz, “In Vitro Propagation of Gypsophila (Gypsophila paniculata L.) cv. Perfecta.-Revista-Chapingo,” Horticultural Services, Vol. 1, 1994, pp. 67-71.
[22] X. W. Jiang and Q. X. Zhang, “Studies on Transgenic Acceptor System of Ground-Cover Chrysanthemum via Indirect Somatic Embryogenesis,” Forest Research, Vol. 20, No. 3, 2007, pp. 328-333.
[23] X. W. Jiang, F. J. Chen, M. Lu, M. Cai and Q. X. Zhang, “Direct Somatic Embryogenesis in Ground-Cover Chrysan-Themum,” Journal of Beijing Forestry University, Vol. 30, No. 2, 2008, pp. 65-70.
[24] K. H. G. Ashok, H. N. Murthy and K. Y. Pack, (2003). “Embryogenesis and Plant Regeneration from Anther Culture of Cucumis sativus L.,” Scientia Hoticulture, Vol. 98, No. 2, 2003, pp. 213-222. doi:10.1016/S0304-4238(03)00003-7
[25] H. R. Tang, Y. Q. Wang and Z. L. Ren, “An Overview of Progress on Somatic Embryogenesis and Transformation in Walnut,” Scientia Silvae Sinicae, Vol. 36, No. 3, 2000, pp. 102-110.
[26] A. F. Yang, Y. M. Zhu and A. J. Hou, “Several Factors Affecting Somatic Embryos Derived from Cotyledons of Cucumber (Cucumis sativus),” Plant Physiology Communications, Vol. 39, No. 3, 2003, pp. 206-208.
[27] W. S. Chen and S. C. Su, “The Difference and Occurrence of Somatic Embryogenesis in Early Varieties of Walnut,” Science & Technology Information, Vol. 16, 2006, pp. 176-177.
[28] P. Wang, G. Wang and J. Ji, “Embryogenesis and Regeneration from Different of Vegetable Soybean,” Soybean Science, Vol. 24, No. 4, 2005, pp. 314-316.
[29] F. H. Bian, F. N. Qu, C. X. Zheng, C. R. You and X. Q. Gong, “Recent Advances in Cyclamen persicum Mill. Somatic Embryogenesis,” Northern Horticulture, Vol. 8, 2007, pp. 70-72.
[30] H. Cui, Z. C. Guo and Y. L. Gui, “Studies on Somatic Embryogenesis and Desiccation Somatic embryos in Celery,” Acta Botanica Sinica, Supplement A00, 1993, pp. 94-100.
[31] S. Werbrouck, T. Eeekhaut and P. Deber, “Induction and Conversion of Somatic Embryogenesis on the Anther Filament of spathiphyllum Schott.,” Acta Hort, Vol. 520, 2000, pp. 263-269.
[32] G. F. Zhu, F. B. Lu, M. L. Chen and B. Q. Wang, (2004). “Somatic Embryogenesis and Plantlet Regeneration of Euphorbia pulcherrima,” Subtropical Plant Science, Vol. 33, No. 4, 2004, pp. 37-38.
[33] S. S. Niu, S. W. Song, F. Yan and H. X. Miao, “Somatic Embryogenesis and Plantlet Regeneration in Citrullus lanatus cv. Zhengkang No. 4,” Journal of Fruit Science, Vol. 23, No. 3, 2006, pp. 406-410.
[34] Q. X. Zhang, Y. M. Fang, M. Lü and N. Chen, “A Preliminary Study on Induction of Adventitious Buds and Embryogenesis in Clematis Multi-Blue,” Acta Horticulturae Sinica, Vol. 34, No. 2, 2007, pp. 465-468.
[35] W. J. Xin, B. Xu, G. D. Wang, W. M. Guo, F. D. Wen and J. P. Jin, “Somatic Embryogenesis and Plant Regeneration of Anthurium andraeanum,” Acta Horticulturae Sinica, Vol. 33, No. 6, 2006, pp. 1281-1286.
[36] S. L. Liu, B. W. Han and H. Z. Chen, “Somatic Embryogenesis and Cytological Observation from Petiole of Walnut (Juglans regia L.),” Journal of China Agricultural University, Vol. 18, 1992, pp. 29-32.
[37] L. Wang, X. M. Bao, B. Q. Huang and S. Hao, “Somatic Embryogenic Potential Determined by the Morphological Polarity of the Explant in Tissue Cultures of Freesia Refracta,” Acta Botanica Sinica, Vol. 40, No. 2, 1998, pp. 138-143.
[38] S. G. Dewald and X. F. Wang, “Optimization of Mango Somatic Embryogenesis,” Tropical Crops Translation Series, Vol. 1, pp. 25-29.
[39] M. M. M. Fitch, “High Frequeacy Somatic Embryogenesis and Plant Regeneration from Papaya Hypocotyl Callus,” Plant Cell, Tissue and Organ Culture, Vol. 32, No. 2, 1993, pp. 205-212. doi:10.1007/BF00029844
[40] D. T. Carraway, H. D. Wilde and S. A. Merkle, “Somatic Embryogenesis and Gene Transfer in American Chestnut,” Journal of American Chestnut Found, Vol. 8, 1994, pp. 29-33.
[41] T. Zhang, Z. Y. Cao and X. Y. Wang, “Induction of Somatic Embryogenesis and Plant Regeneration from Cotyledon and Hypocotyls Explants of Eruca Sativa Mill,” In Vitro Cellular Developmental Biology—Plant. Vol. 41, No. 5, 2005, pp. 655-657. doi:10.1079/IVP2005653
[42] B. Stefaniak, “Somatic Embryogenesis and Plant Regeneration of Gladiolus (Gladiolus hort.),” Plant Cell Reports, Vol. 13, No. 7, 1994, pp. 386-389. doi:10.1007/BF00234143
[43] B. Castillo and M. A. L. Smith, “Direct Somatic Embryogenesis from Begonia gracilis Explants,” Plant Cell Reports, Vol. 16, No. 6, 1997, pp. 385-388.
[44] Y. R. Wei, H. Yang, B. Z. Huang, X. Huang, X. L. Huang, J. S. Qiu and L. B. Xu, “Effects of Picloram, ABA and TDZ on Somatic Embryogenesis of Banana,” Acta Horticulturae Sinica, Vol. 34, No. 1, 2007, pp. 81-86.
[45] T. Takejiro, M. Ikuo and M. Eisuke, “Somatic Embryogenesis of Cyclamen Persicum Mill. ‘Anneke’ from Aseptic Seedlings,” Plant Cell Reports, Vol. 15, No, 1-2, 1995, pp. 22-25.
[46] W. Tulecke and G. Mcgranahan, “Somatic Embryogenesis and Plant Regeneration from Cotyledons of Walnut,” Juglans regia L. Plant Science, Vol. 40, No. 1, 1985, pp. 57-63. doi:10.1016/0168-9452(85)90163-3
[47] X. Q. Li, S. F. Krasnyanski and S. S. Korban, “Optimization of the UidA Gene Transfer into Somatic Embryos of Rose via Agrobacterium Tumefaciens,” Plant Physiology and Biochemistry, Vol. 40, No. 5, 2002, pp. 453-459. doi:10.1016/S0981-9428(02)01394-3
[48] Y. T. Zeng, C. Z. Zhao and L. Lu, “Establishment of Plant Regeneration System through Somatic Embryogenesis of Cotyledons of Cucumis melo ‘GT-1’,” Journal of Gansu Agricultural University, Vol. 42, No. 2, 2007, pp. 39-42.
[49] H. Nakagawa and T. Saijyo, “Effect Sugar and ABA on Somatic Embryo Formation with Cotyledon Culture of Melon,” Foreign Crop Breeding, Vol. 21, No. 3, 2002, p. 75.
[50] Y. Xiao and G. Wang, “Studies on High Quality Somatic Embryogenesis Applied to Artificial Seed of Euphorbia Pulcherrima Willd,” Acta Horticulturae Sinica, Vol. 33, No. 1, 2006, pp. 175-178.
[51] B. X. Li and Z. H. Cheng, “Studies on the Induction Factors of Somatic Embryogenesis in Garlic (Allium sativum L.),” Journal of Northwest Sci-Tech University of Agriculture and Forestry, Vol. 30, No. 5, 2002, pp. 31-34.
[52] H. R. Tang, M. Wallbraun, Z. L. Ren, G. M. Reustle and G. Krczal, “Genetic Transformation of the Trichoderma Endochitinase Gene ThEn 42 to Somatic Embryos of English Walnut,” Acta Horticulturae Sinica, Vol. 28, No. 1, 2001, pp. 12-18.
[53] R. Scorza, P. H. Morgens, J. M. Cordts, S. Mante and A. M. Callahan, “Agrobacterium-Mediated Transformation of Peach (Prunus persica L. Batch) Leaf Segments, Immature Embryos and Long Term Embryogenic Callus,” In Vitro Cellular & Developmental Biology, Vol. 26, 1990, pp. 829-834. doi:10.1007/BF02623625
[54] G. Q. Song and K. C. Sink, “Transformation of Montmorency Sour Cherry (Prunus cerasus L.) and Gisela 6 (P. cerasus × P. canescens) Cherry Rootstock Mediated by Agrobacterium Tumefaciens,” Plant Cell Report, Vol. 25, No. 2, 2006, pp. 117-123. doi:10.1007/s00299-005-0038-9

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.