The Post-Transcriptional mRNA Editing Analysis of cox3 Mitochondrial Gene in Fern Asplenium nidus Reveals Important Features
Sebastian Panarese, Guglielmo Rainaldi
DOI: 10.4236/ajps.2011.24063   PDF    HTML     4,505 Downloads   7,498 Views  

Abstract

In the mitochondria and chloroplasts of flowering plants (angiosperms), transcripts of protein-coding genes are altered after synthesis so that their final primary nucleotide sequence differs from that of the corresponding DNA sequence. This posttranscriptional mRNA editing consists almost exclusively of C-to-U substitutions (direct) and less frequently of U-to-C substitution (reverse). Editing occurs predominantly within coding regions, mostly at isolated C residues, and usually at first or second positions of codons, thereby almost always changing the amino acid from that specified by the unedited codon. Editing may also create initiation and termination codons. The effect of C-to-U RNA editing in plants is to make proteins encoded by plant organelles more similar in sequence to their non plant homologs, then specific C-to- U editing events are essential for the production of functional plant mitochondrial proteins. Our attention has been devoted to the study of the mRNA editing in cox3 mitochondrial gene of fern Asplenium nidus. This study reveals the extreme importance of both C-to-U and U-to-C substitutions for protein expression.

Share and Cite:

Panarese, S. and Rainaldi, G. (2011) The Post-Transcriptional mRNA Editing Analysis of cox3 Mitochondrial Gene in Fern Asplenium nidus Reveals Important Features. American Journal of Plant Sciences, 2, 535-538. doi: 10.4236/ajps.2011.24063.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] K. Oda, K. Yamato, E. Ohta, H. Fukuzawa, T. Kohchi, S. Nakayama, K. Ishizaki, M. Fujisawa and K. Yamato, “Gene Organization Deduced from the Complete Sequence of Liverwort Marchantia polymorpha Mitochondrial DNA. A Primitive Form of Plant Mitochondrial Genome,” Journal of Molecular Biology, Vol. 223, No. 1, 1992, pp. 1-7. doi:10.1016/0022-2836(92)90708-R
[2] K. Terasawa, M. Odahara, Y. Kabeya, T. Kikugawa, T. Sekine, M. Fujiwara and N. Sato, “The Mitochondrial Genome of the Moss Physcomitrella patens Sheds New Light on Mitochondrial Evolution in Land Plants,” Molecular Biology and Evolution, Vol. 24, No. 3, 2006, pp. 699-709. doi:10.1093/molbev/msl198
[3] M. Unseld, J. R. Marienfeld, P. Brandt and A. Brennicke, “The Mitochondrial Genome of Arabidopsis thaliana Contains 57 Genes in 366,924 Nucleotides,” Nature Genetics, Vol. 15, 1997, pp. 57-61. doi:10.1038/ng0197-57
[4] T. Kubo, S. Nishizawa, A. Sugawara, N. Itchoda, A. Es- tiati and T. Mikami, “The Complete Nucleotide Sequence of the Mitochondrial Genome of Sugar Beet (Beta vulgaris L.) Reveals a Novel Gene for tRNA(Cys) (GCA),” Nucleic Acids Research, Vol. 28, No. 13, 2000, pp. 2571-2576. doi:10.1093/nar/28.13.2571
[5] Y. Notsu, S. Masood, T. Nishikawa, N. Kubo, G. Akiduki, M. Nakazono, A. Hirai and K. Kadowaki, “The Complete Sequence of the Rice (Oryza sativa L.) Mitochondrial Ge- nome: Frequent DNA Sequence Acquisition and Loss during the Evolution of Flowering Plants,” Molecular Genetics and Genomics, Vol. 268, No. 4, 2002, pp. 434-445. doi:10.1007/s00438-002-0767-1
[6] H. Handa, “The Complete Nucleotide Sequence and RNA Editing Content of the Mitochondrial Genome of Rapeseed (Brassica napus L.): Comparative Analysis of the Mitochondrial Genomes of Rapeseed and Arabidopsis thaliana,” Nucleic Acids Research, Vol. 31, No. 20, 2003, pp. 5907-5916. doi:10.1093/nar/gkg795
[7] S. W. Clifton, P. Minx, C. M. Fauron, M. Gibson, J. O. Allen, H. Sun, M. Thompson, W. B. Barbazuk, S. Kanuganti, C. Tayloe, L. Meyer, R. K. Wilson and K. J. Newton, “Sequence and Comparative Analysis of the Maize NB Mitochondrial Genome,” Plant Physiology, Vol. 136, 2004, pp. 3486-3503. doi:10.1104/pp.104.044602
[8] Y. Sugiyama, Y. Watase, M. Nagase, N. Makita, S. Yagura, A. Hirai and M. Sugiura, “The Complete Nucleo- tide Sequence and Multipartite Organization of the Tobacco Mitochondrial Genome: Comparative Analysis of Mitochondrial Genomes in Higher Plants, Molecular Genetics and Genomics, Vol. 272, No. 6, 2005, pp. 603-615. doi:10.1007/s00438-004-1075-8
[9] Y. Ogihara, Y. Yamazaki, K. Murai, A. Kanno, T. Terachi, T. Shiina, N. Miyashita, S. Nasuda, C. Nakamura, N. Mori, S. Takumi, M. Murata, S. Futo and K. Tsunewaki, “Structural Dynamics of Cereal Mitochon- drial Genomes as Revealed by Complete Nucleotide Se- quencing of the Wheat Mitochondrial Genome,” Nucleic Acids Research, Vol. 33, No. 19, 2005, pp. 6235-6250. doi:10.1093/nar/gki925
[10] A. Kanno, M. Nakazono, A. Hirai and T. Kameya, “A Chloroplast Derived trnH Gene Is Expressed in the Mito- chondrial Genome of Gramineous Plants,” Plant Molecular Biology, Vol. 34, No. 2, 1997, pp. 353-356. doi:10.1023/A:1005828728036
[11] J. Fey and L. Marechal-Drouard, “Expression of the Two Chloroplast-Like tRNA (Asn) Genes in Potato Mitochon- dria: Mapping of Transcription Initiation Sites Present in the trnN1-trnYnad2 Cluster and Upstream of trnN2,” Current Genetics, Vol. 36, No. 1-2, 1999, pp. 49-54. doi:10.1007/s002940050471
[12] F. Damiano, L. R. Ceci, L. Siculella and R. Gallerani, “Transcription of Two Sunflower (Helianthus annuus L.) Mitochondrial tRNA Genes Having Different Genetic Origins,” Gene, Vol. 286, No. 1, 2002, pp. 25-32. doi:10.1016/S0378-1119(01)00801-0
[13] S. Panarese, G. Rainaldi, C. De Benedetto and R. Galler- ani, “Sequencing of a Segment of a Monilophyte Species Mitochondrial Genome Reveals Features Highly Similar to those of Seed Plant mtDNAs,” The Open Plant Science Journal, Vol. 2, 2008, pp. 15-20. doi:10.2174/1874294700802010015
[14] M. R. Hanson, M. L. Boeshore, P. McClean, M. O’Con- nell and H. Nivison, “The Isolation of Mitochondria and Mitochondrial DNA, Methods in Enzymology, Vol. 118, 1986, pp. 437-447. doi:10.1016/0076-6879(86)18091-8
[15] P. Taberlet, L. Gielly, G. Pautou and J. Bouvet, “Universal Primers for Amplification of the Non-Coding Regions of Chloroplast DNA,” Plant Molecular Biology, Vol. 17, No. 5, 1991, pp. 1105-1109. doi:10.1007/BF00037152
[16] K. Isono, Y. Niwa, K. Satoh and H. Kobayashi, “Evidence for Transcriptional Regulation of Plastid Photosynthesis Genes in Arabidopsis thaliana Roots,” Plant Physiology, Vol. 114, No. 2, 1997, pp. 623-630. doi:10.1104/pp.114.2.623
[17] F. G. Dong, K. G. Wilson and C. A. Makaroff, “The Radish (Raphanus sativus L.) Mitochondrial cox2 Gene Contains an ACG at the Predicted Translation Initiation Site,” Current Genetics, Vol. 34, No. 2, 1998, pp. 79-87. doi:10.1007/s002940050369

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.