[1]
|
Grannis Jr, F.W., Kim, J.Y. and Lay, L. (2017) Fluid Complications. Cancer Network. http://www.cancernetwork.com
|
[2]
|
Isikawa, T., Kokura, S., Sakamoto, N., et al. (2012) Phase II Trial of Combined Regional Hyperthermia and Gemcitabine for Locally Advanced or Metastatic Pancreatic Cancer. International Journal of Hyperthermia, 28, 597-604. https://doi.org/10.3109/02656736.2012.695428
|
[3]
|
Sharma, H.S. (2006) Hyperthermia Induced Brain Oedema: Current Status & Future Perspectives. Indian Journal of Medical Research, 123, 629-652.
|
[4]
|
Seegenschmiedt, M.H., Fessenden, P. and Vernon, C.C. (1996) Thermoradiotherapy and Thermochemotherapy. Springer Verlag, Berlin Heidelberg, 1-2.
|
[5]
|
Kosaka, M., Sugahara, T., Schmidt, K.L., et al. (2001) Thermotherapy for Neoplasia, Inflammation, and Pain. Springer Verlag, Tokyo.
|
[6]
|
Mórocz, I.A., Hynynen, K., Gudbjartsson, H., Peled, S., Colucci, V. and Jólesz, F.A. (1998) Brain Edema Development after MRI Guided Focused Ultrasound Treatment. Journal of Magnetic Resonance Imaging, 8, 136-142. https://doi.org/10.1002/jmri.1880080126
|
[7]
|
Hosotani, K., Katsumura, H., Kabuto, M., Handa, Y., Kubota, T. and Hayashji, M. (1993) Effect of Whole-Body Hyperthermia on the Development of Peritumoral Brain Oedema. International Journal of Hyperthermia, 1, 25-36. https://doi.org/10.3109/02656739309061476
|
[8]
|
Lyons, B.E., Britt, R.H. and Strohbehn, J.W. (1984) Localized Hyperthermia in the Treatment of Malignant Brain Tumors Using an Interstitial Microwave Antenna Array. IEEE Transactions on Biomedical Engineering, 31, 53-62. https://doi.org/10.1109/TBME.1984.325370
|
[9]
|
Gilly, F.N., Carry, P.Y., Bracket, A., et al. (1992) Treatment of Malignant Peritoneal Effusion in Digestive and Ovarian Cancer. Medical Oncology and Tumor Pharmacotherapy, 9, 177-181.
|
[10]
|
Neuwirth, M.G., Alexander, H.R. and Karakousis, G.C. (2015) Then and Now: Cytoreductive Surgery with Hyperthermic Intraperitoneal Chemotherapy (HIPEC), a Historical Perspective. Journal of Gastrointestinal Oncology, 7, 18-28.
|
[11]
|
Szasz, A., Szasz, N. and Szasz, O. (2010) Oncothermia—Principles and Practices. Springer Science, Heidelberg.
|
[12]
|
Andocs, G., Rehman, M.U., Zhao, Q.-L., Tabuchi, Y., Kanamori, M. and Kondo, T. (2016) Comparison of Biological Effects of Modulated Electro-Hyperthermia and Conventional Heat Treatment in Human Lymphoma U937 Cell. Cell Death Discovery (Nature Publishing Group), 2, Article ID: 16039. https://doi.org/10.1038/cddiscovery.2016.39
|
[13]
|
Szasz, O. and Szasz, A. (2014) Oncothermia—Nano-Heating Paradigm. Journal of Cancer Science and Therapy, 6, 117-121. https://doi.org/10.4172/1948-5956.1000259
|
[14]
|
Andocs, G., Renner, H., Balogh, L., Fonyad, L., Jakab, C. and Szasz, A. (2009) Strong Synergy of Heat and Modulated Electro-Magnetic Field in Tumor Cell Killing, Study of HT29 Xenograft Tumors in a Nude Mice Model. Strahlentherapie und Onkologie, 185, 120-126. https://doi.org/10.1007/s00066-009-1903-1
|
[15]
|
Szasz, A., Iluri, N. and Szasz, O. (2013) Local Hyperthermia in Oncology—To Choose or Not to Choose? In: Huilgol, N., Ed., Hyperthermia, InTech, Rijeka.
|
[16]
|
West, J. (2012) Respiratory Physiology: The Essentials. 9th Edition, Lippincott Williams & Wilkins, Baltimore, 177.
|
[17]
|
Levick, J.R. (2003) Introduction to Cardiovascular Physiology. Oxford Press, Oxford, 179-180.
|
[18]
|
Huxley, V.H. and Scallan, J. (2011) Lymphatic Fluid: Exchange Mechanisms and Regulation. The Journal of Physiology, 589, 2935-2943. https://doi.org/10.1113/jphysiol.2011.208298
|
[19]
|
De Luca Jr, L.A., David, R.B. and Menani, J.V. (2014) Homeostasis and Body Fluid Regulation, Neurobiology of Body Fluid Homeostasis. In: De Luca, L.A., Menani, J.V. and Johnson, A.K., Eds., Transduction and Integration, CRC Press/Taylor & Francis, Boca Raton, Ch. 15.
|
[20]
|
Levick, J.R. and Michel, C.C. (2010) Microvascular Fluid Exchange and the Revised Starling Principle. Cardiovascular Research, 87, 198-210. https://doi.org/10.1093/cvr/cvq062
|
[21]
|
Woodcock, T.E. and Woodcock, T.M. (2012) Revised Starling Equation and the Glycocalyx Model of Transvascular Fluid Exchange: An Improved Paradigm for Prescribing Intravenous Fluid Therapy. British Journal of Anaesthesia, 108, 384-394. https://doi.org/10.1093/bja/aer515
|
[22]
|
Carbon, M., Wübbeler, G., Mackert, B.-M., et al. (2004) Non-Invasive Magnetic Detection of Human Injury Currents. Clinical Neurophysiology, 115, 1027-1032. https://doi.org/10.1016/j.clinph.2003.12.035
|
[23]
|
McCaig, C.D., Rajnicek, A.M., Song, B. and Zhao, M. (2005) Controlling Cell Behaviour Electrically: Current Views and Future Potential. Physiological Reviews, 85, 943-978. https://doi.org/10.1152/physrev.00020.2004
|
[24]
|
Barker, A.T., Jaffe, L.F. and Vanable Jr, J.W. (1982) The Glabrous Epidermis of Cavies Contains a Powerful Battery. American Journal of Physiology, 242, 358-366.
|
[25]
|
Reid, B., McCaig, C.D., Zhao, M., et al. (2005) Wound Healing in Rat Cornea: The Role of Electric Currents. FASEB Journal, 19, 379-386. https://doi.org/10.1096/fj.04-2325com
|
[26]
|
Reid, B., Nuccitelli, R. and Zhao, M. (2007) Non-Invasive Measurement of Bioelectric Currents with a Vibrating Probe. Nature Protocols, 2, 661-669. https://doi.org/10.1038/nprot.2007.91
|
[27]
|
Mackert, B.-M., Mackert, J., Wübbeler, G., et al. (1999) Magnetometry of Injury Currents from Human Nerve and Muscle Specimens Using Superconducting Quantum Interferences Devices. Neuroscience Letters, 262, 163-166. https://doi.org/10.1016/S0304-3940(99)00067-1
|
[28]
|
Song, B., Zhao, M., Forrester, J.V., et al. (2002) Electrical Cues Regulate the Orientation and Frequency of Cell Division and the Rate of Wound Healing In Vivo. PNAS, 99, 13577-13582. https://doi.org/10.1073/pnas.202235299
|
[29]
|
Chiang, M.C., Cragoe Jr, E.J. and Vanable Jr., J.W. (1991) Intrinsic Electric Fields Promote Epithelization of Wounds in the Newt, Notophthalmus viridescens. Developmental Biology, 146, 377-85. https://doi.org/10.1016/0012-1606(91)90239-Y
|
[30]
|
Zhao, M. (2009) Electrical Fields in Wound Healing—An Overriding Signal That Directs Cell Migration. Seminars in Cell and Developmental Biology, 20, 674-682. https://doi.org/10.1016/j.semcdb.2008.12.009
|
[31]
|
Ud-Din, S., Sebastian, A., Giddings, P., Colthurst, J., Whiteside, S., Morris, J., et al. (2015) Angiogenesis Is Induced and Wound Size Is Reduced by Electrical Stimulation in an Acute Wound Healing Model in Human Skin. PLoS ONE, 10, e0124502.
|
[32]
|
Katchalsky, A. and Curran, P. (1967) Non-Equilibrium Thermodynamics in Biophysics. Harvard University Press, Cambridge-Massachusets.
|
[33]
|
Scallan, J., Huxley, V.H. and Korthuis, R.J. (2010) Capillary Fluid Exchange: Regulation, Functions, and Pathology. In: Pathophysiology of Edema Formation, Morgan & Claypool Life Sciences, San Rafael, CA, Chapter 4.
|
[34]
|
Nordenstrom, B.W.E. (1983) Biologically Closed Electric Circuits: Clinical Experimental and Theoretical Evidence for an Additional Circulatory System. Nordic Medical Publications, Stockholm.
|
[35]
|
Nordenstrom, B.W.E. (1998) Exploring BCEC-Systems, (Biologically Closed Electric Circuits). Nordic Medical Publications, Stockholm.
|
[36]
|
Nordenstrom, B.W.E. (1992) Impact of Biologically Closed Electric Circuits (BCEC) on Structure and Function. Integrative Physiological and Behavioral Science, 27, 285-303. https://doi.org/10.1007/BF02691165
|
[37]
|
Mycielska, M.E. and Djamgoz, M.B.A. (2004) Cellular Mechanisms of Direct-Current Electric Field Effects: Galvanotaxis and Metastatic Disease. Journal of Cell Science, 117, 1631-1639. https://doi.org/10.1242/jcs.01125
|
[38]
|
Pu, J., McCaig, C.D., Cao, L., et al. (2007) EGF Receptor Signalling Is Essential for Electric-Field-Directed Migration of Breast Cancer Cells. Journal of Cell Science, 120, 3395-3403. https://doi.org/10.1242/jcs.002774
|
[39]
|
Nordenström, B.E.W. (1978) Preliminary Clinical Trials of Electrophoretic Ionization in the Treatment of Malignant Tumors. IRCS Journal of Medical Science, 6, 537-540.
|
[40]
|
Nordenström, B.E.W. (1985) Electrochemical Treatment of Cancer. Annales De Radiologie, 28, 128-129.
|
[41]
|
Watson, B.W. (1991) Reappraisal: The Treatment of Tumors with Direct Electric Current. Medical Science Research, 19, 103-105.
|
[42]
|
Samuelsson, L., Jonsson, L. and Stahl, E. (1983) Percutaneous Treatment of Pulmonary Tumors by Electrolysis. Radiologie, 23, 284-287
|
[43]
|
Miklavcic, D., Sersa, G., Kryzanowski, M., et al. (1993) Tumor Treatment by Direct Electric Current, Tumor Temperature and pH, Electrode Materials and Configuration. Bioelectrochemistry and Bioenergetics, 30, 209-220. https://doi.org/10.1016/0302-4598(93)80080-E
|
[44]
|
Nordenstrom, B.W.E. (2009) Biologically Closed Electric Circuits: Activation of Vascular Interstitial Closed Electric Circuits for Treatment of Inoperable Cancers. Journal of Bioelectricity, 3, 137-154. https://doi.org/10.1080/15368378409035964
|
[45]
|
Nordenstrom, B.W.E. (1994) The Paradigm of Biologically Closed Electric Circuits (BCEC) and the Formation of an International Association (IABC) for BCEC Systems. The European Journal of Surgery. Supplement, 574, 7-23.
|
[46]
|
Dvorak, H.F. (1986) Tumors: Wounds That Do Not Heal. Similarities between Tumor Stroma Generation and Wound Healing. The New England Journal of Medicine, 315, 1650-1659. https://doi.org/10.1056/NEJM198612253152606
|
[47]
|
Schäfer, M. and Werner, S. (2008) Cancer as an Overhealing Wound: An Old Hypothesis Revisited. Nature Reviews Molecular Cell Biology, 9, 628-638. https://doi.org/10.1038/nrm2455
|
[48]
|
Singh, K. (2015) Carcinogenesis and Diabetic Wound Healing: Evidences of Parallelism. Current Diabetes Reviews, 11, 32-45. https://doi.org/10.2174/1573399811666150109122205
|
[49]
|
Goh, J. and Ladiges, W.C. (2014) Exercise Enhances Wound Healing and Prevents Cancer Progression during Aging by Targeting Macrophage Polarity. Mechanisms of Ageing and Development, 39, 41-48. https://doi.org/10.1016/j.mad.2014.06.004
|
[50]
|
Meng, X. and Riordan, N.H. (2006) Cancer Is a Functional Repair Tissue. Medical Hypotheses, 66, 486-490. https://doi.org/10.1016/j.mehy.2005.09.041
|
[51]
|
Kimberly, M.A., Opdenaker, L.M., Flynn, D. and Sims-Mourtada, J. (2015) Wound Healing and Cancer Stem Cells: Inflammation as a Driver of Treatment Resistance in Breast Cancer. Cancer Growth Metastasis, 8, 1-13.
|
[52]
|
Rybinski, B., Franco-Barraza, J. and Cukierman, E. (2014) The Wound Healing, Chronic Fibrosis, and Cancer Progression Triad. Physiological Genomics, 46, 223-244. https://doi.org/10.1152/physiolgenomics.00158.2013
|
[53]
|
Calvo, F., Randfl, R., Hooper, S., Faruggia, A.G., Moeendarbary, E., Bruckbauer, A., Batista, F., Charras, G. and Sahai, E. (2015) Cdc42EP3/BORG2 and Septin Network Enables Mechano-Transduction and the Emergence of Cancer Associated Fibroblasts. Cell Reports, 13, 1-16. https://doi.org/10.1016/j.celrep.2015.11.052
|
[54]
|
Kaspera, M., Jaksa, V., Area, A., Bergströma, Å ., Schwägera, A., Svärda, J., Teglunda, S., Barkerc, N. and Toftgård, R. (2011) Wounding Enhances Epidermal Tumorigenesis by Recruiting Hair Follicle Keratinocytes. PNAS, 108, 4099-4104. https://doi.org/10.1073/pnas.1014489108
|
[55]
|
Wolf, A.A. (1981) On a Unified Theory of Cancer Etiology and Treatment Based on the Superconduction Double-Dipole Model. Physiological Chemistry and Physics, 13, 493-510.
|
[56]
|
Giaquinta, G., Di Mauro, C., Onori, S. and Cannistraro, S. (1985) Experimental Evidence of Superconducting Properties in Human Ceruloplasmin. In: Gandolfo, G., Michaelson, S.M. and Rindi, A., Eds., Biological Effects and Dosimetry of Static and ELF Electromagnetic Fields, Springer, Berlin, 339-343. https://doi.org/10.1007/978-1-4613-2099-9_21
|
[57]
|
Calvo, F.N. (2014) Tumor Microenvironment: Unleashing Metalloproteinases to Induce a CAF Phenotype. Current Biology, 24, No 20.
|
[58]
|
Fierheller, M. and Sibbald, R.G. (2010) A Clinical Investigation into the Relationship between Increased Periwound Skin Temperature and Local Wound Infection in Patients with Chronic Leg Ulcers. Advances in Skin & Wound Care, 23, 369-739. https://doi.org/10.1097/01.ASW.0000383197.28192.98
|
[59]
|
Song, B., Zhao, M., Forrester, J., et al. (2004) Nerve Regeneration and Wound Healing Are Stimulated and Directed by an Endogenous Electrical Field In Vivo. Journal of Cell Science, 117, 4681-4690. https://doi.org/10.1242/jcs.01341
|
[60]
|
Guyton, A.C. (1976) Textbook of Medical Physiology. Saunders, Philadelphia.
|
[61]
|
Boron, W.F. (2004) A Cellular and Molecular Approach. Elsevier/Saunders, Philadelphia.
|
[62]
|
Dewhirst, M.W., Viglianti, B.L., Lora-Michiels, M., et al. (2003) Basic Principles of Thermal Dosimetry and Thermal Thresholds for Tissue Damage from Hyperthermia. International Journal of Hyperthermia, 19, 267-294. https://doi.org/10.1080/0265673031000119006
|
[63]
|
Jones, E., Thrall, D., Dewhirst, M.W. and Vujaskovic, Z. (2006) Prospective Thermal Dosimetry: The Key to Hyperthermia's Future. International Journal of Hyperthermia, 22, 247-253. https://doi.org/10.1080/02656730600765072
|
[64]
|
Thrall, D.E., Rosner, G.L., Azuma, C., Larue, S.M., Case, B.C., Samulsky, T. and Dewhirst, M.W. (2000) Using Units of CEM43oC T90 Local Hyperthermia Thermal dose Can Be Delivered as Prescribed. International Journal of Hyperthermia, 16, 415-428. https://doi.org/10.1080/026567300416712
|
[65]
|
Leophold, K.A., Dewhirst, M.W., Samulsky, T.V., Dodge, R.K., Georg, S.L., Blivin, J.L., Prosnitz, L.R. and Oleson, J.R. (1993) Cumulative Minutes with T90 Greater Than Temindex Is Predictive of Response of Superficial Malignancies to Hyperthermia and Radiation. International Journal of Radiation Oncology*Biology* Physics, 25, 841-847. https://doi.org/10.1016/0360-3016(93)90314-L
|
[66]
|
Dewey, W.C. (1994) Arrhenius Relationships from the Molecule and Cell to the Clinic. International Journal of Hyperthermia, 10, 457-483. https://doi.org/10.3109/02656739409009351
|
[67]
|
Dewey, W.C., Hopwood, L.E., Sapareto, S.A. and Gerweck, L.E. (1977) Cellular Response to Combination of Hyperthermia and Radiation. Radiology, 123, 463-474. https://doi.org/10.1148/123.2.463
|
[68]
|
Sapareto, S.A. and Dewey, W.C. (1984) Thermal Dose Determination in Cancer Therapy. International Journal of Radiation Oncology*Biology*Physics, 10, 787-800. https://doi.org/10.1016/0360-3016(84)90379-1
|
[69]
|
Moritz, A.R. and Henriques, F.C. (1947) Studies of Thermal Injury. ii. The relative importance of Time and Surface Temperature in the Causation of Cutaneous Burns. American Journal of Pathology, 23, 695-720.
|
[70]
|
Henriques, F.C. (1947) Studies of Thermal Injury v. The Predictability and the Significance of Thermally Induced Rate Processes Leading to Irreversible Epidermal Injury. Archives of Pathology, 43, 489-502.
|
[71]
|
Urano, M. and Douple, E. (1994) Chemopotentiation by Hyperthermia. Hyperthermia in Oncology, 4, 173.
|
[72]
|
Sapareto, S.A. and Dewey, W.C. (1984) Thermal Dose Determination in Cancer Therapy. International Journal of Radiation Oncology*Biology*Physics, 10, 787-800. https://doi.org/10.1016/0360-3016(84)90379-1
|
[73]
|
Pearce, J.A. (2009) Relationship between Arrhenius Models of Thermal Damage and the CEM 43 Thermal Dose. Energy-Based Treatment of Tissue and Assessment V, 7181, Article ID: 718104. https://doi.org/10.1117/12.807999
|
[74]
|
Perez, C.A. and Sapareto, S.A. (1984) Thermal Dose Expression in Clinical Hyperthermia and Correlation with Tumor Response/Control. Cancer Research, 44, 4818-4825.
|
[75]
|
Thrall, D.E., LaRue, S.M., Yu, D., Samulski, T., Sanders, L., Case, B., Rosner, G., Azuma, C., Poulson, J., Pruitt, A.F., Stanley, W., Hauck, M.L., Williams, L., Hess, P. and Dewhirst, M.W. (2005): Thermal Dose Is Related to Duration of Local Control in Canine Sarcomas Treated with Thermoradiotherapy. Clinical Cancer Research, 11, 5206-5214. https://doi.org/10.1158/1078-0432.CCR-05-0091
|
[76]
|
Maguire, P.D., et al. (2001) A Phase II Trial Testing the Thermal Dose Parameter CEM43oCT90 as a Predictor of Response in Soft Tissue Sacomas Treated with Pre-Operative Thermorasiotherapy. International Journal of Hyperthermia, 17, 283-290. https://doi.org/10.1080/02656730110039449
|
[77]
|
Dewhirst, M.W., Vujaskovic, Z., Jones, E. and Thrall, D. (2005) Re-Setting the Biologic Rationale for Thermal Therapy. International Journal of Hyperthermia, 21, 779-790. https://doi.org/10.1080/02656730500271668
|
[78]
|
de Bruijne, M., van der Holt, B., van Rhoon, G.C., et al. (2010) Evaluation of CEM43°CT90 Thermal Dose in Superficial Hyperthermia; A Retrospective Analysis. Strahlentherapy & Onkologie (Radiotherapy and Oncology), 186, 436-443. https://doi.org/10.1007/s00066-010-2146-x
|
[79]
|
Assi, H. (2009) A New cem43 Thermal Dose Model Based on Vogel-Tammann-Fulcher Behavior in Thermal Damage Processes. Ryerson University, Toronto, Ontario.
|
[80]
|
Esrick, M.A. and McRae, D.A. (1994) The Effect of Hyperthermia Induced Tissue Conductivity Changes on Electrical Impedance Temperature Mapping. Physics in Medicine & Biology, 39, 133-144. https://doi.org/10.1088/0031-9155/39/1/008
|
[81]
|
Vincze, Gy., Szasz, O. and Szasz, A. (2015) Generalization of the Thermal Dose of Hyperthermia in Oncology. Open Journal of Biophysics, 5, 97-114. https://doi.org/10.4236/ojbiphy.2015.54009
|
[82]
|
Vincze, Gy., Szigeti, Gy., Andocs, G. and Szasz, A. (2015) Nanoheating without Artificial Nanoparticles. Biology and Medicine, 7, 249.
|
[83]
|
Andocs, G., Rehman, M.U., Zhao, Q.L., Papp, E., Kondo, T. and Szasz, A. (2015) Nanoheating without Artificial Nanoparticles Part II. Experimental Support of the Nanoheating Concept of the Modulated Electro-Hyperthermia Method, Using U937 Cell Suspension Model. Biology and Medicine, 7, 1-9. https://doi.org/10.4172/0974-8369.1000247
|
[84]
|
Wismeth, C., Dudel, C., Pascher, C., Ramm, P., Pietsch, T., Hirschmann, B., Reinert, C., Proescholdt, M., Rümmele, P., Schuierer, G., Bogdahn, U. and Hau, P. (2010) Transcranial Electro-Hyperthermia Combined with Alkylating Chemotherapy in Patients with Relapsed High-Grade Gliomas—Phase I Clinical Results. Journal of Neuro-Oncology, 98, 395-405. https://doi.org/10.1007/s11060-009-0093-0
|
[85]
|
Sahinbas, H., Groenemeyer, D.H.W., Boecher, E. and Szasz, A. (2007) Retrospective Clinical Study of Adjuvant Electro-Hyperthermia Treatment for Advanced Brain-Gliomas. Deutsche Zeitschrift fuer Onkologie, 39, 154-160. https://doi.org/10.1055/s-2007-986020
|
[86]
|
Fiorentini, G., Giovanis, P., Rossi, S., Dentico, P., Paola, R., Turrisi, G. and Bernardeschi, P. (2006) A Phase II Clinical Study on Relapsed Malignant Gliomas Treated with Electro-Hyperthermia. In Vivo, 20, 721-724.
|
[87]
|
Hager, E.D., Sahinbas, H., Groenemeyer, D.H. and Migeod, F. (2008) Prospective Phase II Trial for Recurrent High-Grade Malignant Gliomas with Capacitive Coupled Low Radiofrequency (LRF) Deep Hyperthermia. ASCO. Journal of Clinical Oncology, Annual Meeting Proceedings (Post-Meeting Edition), 26, 2047.
|
[88]
|
Hager, E.D. and Birkenmeier, J. (2006) Glioblastoma multiforme Grad IV: Regionale Tiefenhyperthermie, Antiangiogenese mit Thalidomid, Hochdosis-Ascor-binsäureinfusionen und komplementäre Therapie. Deutsche Zeitschrift für Onkologie, 38, 133-135. https://doi.org/10.1055/s-2006-952050
|
[89]
|
Pang, C.L.K., Xinting, Z., Zhen, W., Junwen, O., Yimin, L., Roussakow, R., et al. (2017) Local Modulated Electro-Hyperthermia in Combination with Traditional Chinese Medicine vs. Intraperitoneal Chemoinfusion for Treatment of Peritoneal Carciomatosis with Malignant Ascites: A Phase II Randomized Trial. Molecular and Clinical Oncology, 6, 723-732. https://doi.org/10.3892/mco.2017.1221
|