[1]
|
J. L. Ashurst and J. E. Collins, (2003) Gene annotation: Predic-tion and testing, Annu. Rev. Genomics Hum Genet, 4, 69–88.
|
[2]
|
M. Nowrousian, C. Würtz, S. P?ggeler, and U. Kück, (2004) Comparative sequence analysis of Sordaria macrospora and Neurospora crassa as a means to improve genome annotation, Fungal Genetics and Biology, 41, 285–292.
|
[3]
|
E. Eden and S. Brunak, (2004) Analysis and recognition of 5’UTR intron splice sites in human Pre-mRNA, Nucleic Acids Res, 32, 1131–1142.
|
[4]
|
M. Kozak, (2006) Rethinking some mechanisms invoked to explain translational regulation in eukaryotes, Gene, 382, 1–11.
|
[5]
|
H. A. Meijer and A. A. M. Thomas, (2002) Control of eu-karyotic protein synthesis by upstream open reading frames in the 5’-untranslated region of an mRNA, Biochem. J., 367, 1–11.
|
[6]
|
F. B. Guo and X. J. Yu, (2007) Re-prediction of protein-coding genes in the genome of Amsacta moorei entomopoxvirus, Journal of Virological Methods, 146, 389– 392.
|
[7]
|
F. B. Guo and C. T. Zhang, (2006) ZCURVE_V: A new self-training system for recognizing protein-coding genes in viral and phage genomes, BMC Bioinformatics, 7, 9.
|
[8]
|
Y. H. Qiao, J. L. Liu, C. G. Zhang, X. H. Xu, and Y. J. Zeng, (2005) SVM classification of human intergenic and gene se-quences, Mathematical Biosciences, 195, 168–178.
|
[9]
|
V. Brendal, L. Xing, and W. Zhu, (2004) Gene structure pre-diction from consensus spliced alignment of multiple ESTs matching the same genomic locus, Bioinformatics, 20, 1157–1169.
|
[10]
|
S. Karlin, J. Mrázek, and A. J. Gentles, (2003) Genome com-parisons and analysis, Current Opinion in Structural Biology, 13, 344–352.
|
[11]
|
S. Gopal, G. A. M. Cross, and T. Gaasterland, (2003) An or-ganism-specific method to rank predicted coding regions in Trypanosoma brucei, Nucleic. Acids Res., 31, 5877–5885.
|
[12]
|
S. D. Schlueter, Q. Dong, and V. Brendel, (2003) Gene-Seqer@PlantGDB: Gene structure prediction in plant genomes, Nucleic. Acids Res., 31, 3597–3600.
|
[13]
|
J. E. Moore and J. A. Lake, (2003) Gene structure prediction in syntenic DNA segments, Nucleic. Acids Res., 31, 7271–7279.
|
[14]
|
J. Wang, et al., (2003) Vertebrate gene predictions and problem of large genes, Nature Reviews Genetics, 4, 741–749.
|
[15]
|
F. Gao and C. T. Zhang, (2004) Comparison of various algo-rithms for recognizing short coding sequences of human genes, Bioinformatics, 20, 673–681.
|
[16]
|
M. Q. Zhang, (2002) Computational prediction of eukaryotic protein-coding genes, Nature Reviews Genetics, 3, 698–709.
|
[17]
|
Burge, C. and Karlin, S. (1997) Prediction of complete gene structures in human genomic DNA, J. Mol. Biol., 268, 78-94.
|
[18]
|
V. V. Solovyev, A. A. Salamov, and C. B. Lawrence, (1995) Identification of human gene structure using linear discrimi-nant functions and dynamic programming, Proc. Int. Conf. Intell. Syst. Mol. Biol., 3, 367–375.
|
[19]
|
M. G. Reese, D. Kulp, H. Tammana, and D. Haussler, (2000) Genie-Gene finding in Drosophila melanogaster, Genome. Res., 10, 529–538.
|
[20]
|
S. Rogic, A. K. Mackworth, and F. B. Ouellette, (2001) Evaluation of gene-finding programs on mammalian sequences, Genome. Res., 11, 817–832.
|
[21]
|
M. Q. Zhang, (1997) Identification of protein coding regions in human genome by quadratic discriminant ana- lysis, Proc. Natl. Acad. Sci., USA, 94, 565–568.
|
[22]
|
J. Besemer, A. Lomsadze, and M. Borodovsky, (2001) Gene-MarkS: A self-training method for prediction of gene starts in microbial genomes, implications for ?nding sequence motifs in regulatory regions, Nucleic. Acids. Res., 29, 2607–2618.
|
[23]
|
F. B. Guo, H. Y. Ou, and C. T. Zhang, (2003) ZCURVE: a new system for recognizing protein-coding genes in bacterial and archaeal genomes, Nucleic. Acids. Res., 31, 1780–1789.
|
[24]
|
E. Birney and R. Durbin, (2000) Using GeneWise in the Dro-sophila annotation experiment, Genome. Res., 10, 547–548.
|
[25]
|
M. S. Gelfand, et al., (1996) Gene recognition via spli- ced sequence alignment, Proc. Natl. Acad. Sci., USA, 93, 9061–9066.
|
[26]
|
R. F. Yeh, L. P. Lim, and C. B. Burge, (2001) Computational inference of homologous gene structures in the human genome, Genome. Res., 11, 803–816.
|
[27]
|
I. M. Meyer and R. Durbin, (2004) Gene structure conservation aids similarity based gene prediction, Nucleic. Acids. Res., 32, 776–783.
|
[28]
|
L. P. Lim and C. B. Burge, (2001) A computational analysis of sequence features involved in recognition of short introns, Proc. Natl. Acad. Sci., USA, 98, 11193– 11198.
|
[29]
|
R. R. Laxton, (1978) The measure of diversity, J. Theor. Biol., 70, 51–67.
|
[30]
|
Li, Q. Z. and Lu, Z. Q., (2001) The prediction of the structural class of protein: Application of the measure of diversity, J. Theor. Boil., 213, 493-502.
|
[31]
|
Chen, Y. L. and Li, Q. Z., (2007) Prediction of the subcellular location of apoptosis proteins, J. Theor. Biol., 245, 775-783.
|
[32]
|
Y. C. Zuo and Q. Z. L, (2009) Using K-minimum increment of diversity to predict secretory proteins of malaria parasite based on groupings of amino acids, Amino Acids, DOI 10.1007/s00726-009-0292-1.
|
[33]
|
L. R. Zhang and L. F. Luo, (2003) Splice site prediction with quadratic discriminant analysis using diversity mea- sure, Nu-cleic. Acids. Res., 31, 6214–6220.
|
[34]
|
J. Lu and L. F. Luo, (2005) Human polII promoter prediction, Prog. Biochem. Biophys., 32, 1185–1191.
|
[35]
|
H. Lin and Q. Z. Li, (2007) Predicting conotoxin superfamily and family by using pseudo amino acid composition and modi-fied Mahalanobis discriminant, Biochem. Biophys. Res. Commun., 354, 548–551.
|
[36]
|
H. Lin, and Q. Z. Li, (2007) Using pseudo amino acid compo-sition to predict protein structural class: Approached by incor-porating 400 dipeptide components, J. Comput. Chem., 28, 1463–1466.
|
[37]
|
F. M. Li and Q. Z. Li, (2008) Using pseudo amino acid com-position to predict protein subnuclear location with improved hybrid approach, Amino Acids, 34, 119–125.
|
[38]
|
X. Z. Hu and Q. Z. Li, (2008) Prediction of the β-Hairpins in proteins using support vector machine, Protein J., 27, 115–122.
|
[39]
|
H. Lin, (2008) The modified Mahalanobis Discriminant for predicting outer membrane proteins by using chou’s pseudo amino acid composition, J. Theor. Biol., 252, 350–356.
|
[40]
|
X. Z. Hu, Q. Z. Li, and C. L. Wang, (2009) Recognition of beta-hairpin motifs in proteins by using the composite vector, Amino Acids, DOI 10.1007/s00726-009-0299-7.
|
[41]
|
W. Chen and L. Luo, (2009) Classification of antimicrobial peptide using diversity measure with quadratic discriminant analysis, J. Microbiol Methods, DOI: 10.1016/ j.mimet.2009.03.013.
|
[42]
|
Y. Feng and L. Luo, (2008) Use of tetrapeptide signals for protein secondary-structure prediction, Amino Acids, 35, 607–614.
|
[43]
|
L. Luo, (2006) Information biology: Hypotheses on coding information quantity, Acta Scientiarum Naturalium Universita-tis NeiMongol, 37, 285–294.
|
[44]
|
Z. Wang, Y. Z. Chen, and Y. X. Li, (2004) A brief review of computational gene prediction methods, Geno. Prot. Bioinfo., 2, 216–221.
|
[45]
|
L. Stein, (2001) Genome annotation: From sequence to biology, Nature Rev. Genet., 2, 493–503.
|