Blast Wave Parameters for Spherical Explosives Detonation in Free Air
I. Sochet, D. Gardebas, S. Calderara, Y. Marchal, B. Longuet
DOI: 10.4236/ojsst.2011.12004   PDF    HTML     11,225 Downloads   24,027 Views   Citations

Abstract

Several formulations have been published to define the characteristic parameters of an incident blast wave. In almost all previous work, the charge examined has been TNT explosive and overpressure has been the main parameter examined. In this paper, we describe an investigation based on three explosives, TNT, PETN and ANFO, which has been conducted by considering three parameters: overpressure, duration and impulse of the positive blast wave phase. Calculations of the three parameters were conducted using TM5-855 through the tool CONWEP and AUTODYN. The positive overpressures were calculated using the new forensic software ASIDE. The evolution of these blast wave parameters is expressed by combining the laws of two approaches: the forensic approach and the security approach. TNT equivalents are expressed in terms of pressure and impulse for the comparisons of ANFO and PETN.

Share and Cite:

Sochet, I. , Gardebas, D. , Calderara, S. , Marchal, Y. and Longuet, B. (2011) Blast Wave Parameters for Spherical Explosives Detonation in Free Air. Open Journal of Safety Science and Technology, 1, 31-42. doi: 10.4236/ojsst.2011.12004.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] N. F. Scilly, “Measurement of the Explosive Performance of High Explosives,” Journal of Loss Prevention in the Process Industries, Vol. 8, No. 5, 1995, pp. 265-273. doi:10.1016/0950-4230(95)00031-U
[2] J. Akhavan, “The Chemistry of Explosive,” 2nd Edition, Royal Society of Chemistry (Great Britain), 2004.
[3] A. Lannoy, “Effet des Explosions sur les Structures, Extrapolation de l’Abaque du TM5-1300,” EDF, Dir. Etudes et Recherches, 1979.
[4] W. S. Filler, “Post Detonation and Thermal Studies of Solid HIgh Explosives in a Closed Chamber,” 6th International Symposium on Coal Combustion, Yale University, New Haven, 1956, pp. 648-657.
[5] DoD standard TNTe, 1998. http://www.fas.org/man/dod,101/navy/docs/es310/chemistry/chemistry.htm
[6] G. F. Kinney and K. J. Graham, “Explosives Shocks in Air,” 2nd Edition, Springer-Verlag, Berlin, 1985.
[7] F. P. Lees, “Loss Prevention in the Process Industries, Hazard Identification, Assessment and Control, Vol. 2,” 2nd Edition, Butterworth Heinemann, Oxford, 1996.
[8] Y. Tongchang, Y. Menchao and W. Jianling, “Determination of Heats of Detonation and Influence of Components of Compos-ite Explosives on Heats of Detonation of High Explosives,” Journal of Thermal Analysis, Vol. 44, No. 6, 1995, pp. 1347-1356. doi:10.1007/BF02549223
[9] B. Gelfand and M. Silnikov, “Blast Effects Caused by Explosions” United States Army, European Research Office of the US Army, London, 2004.
[10] W. E. Baker, “Explosions in Air,” University of Texas Press, Austin, 1973.
[11] H. Pfrtner, “Gas Cloud Ex-plosions and Resulting Blast Effects,” Nuclear Engineering and Design, Vol. 41, No. 1, 1977, pp. 59-67. doi:10.1016/0029-5493(77)90094-2
[12] S. Trélat, “Impact de Fortes Explosions sur les Batiments Représentatifs d’Une Installation Industrielle,” Thèse de Doctorat, l’Université d’Orléans, Orléans, 2006.
[13] M. Omang, S.O. Christensen, S. Borve and J. Trulsen, “Height of Burst Explosions: A Com-parative Study of Numerical and Experimental Results,” Journal Shock Waves, Vol. 19, No. 2, 2009, pp. 135-143. doi:10.1007/s00193-009-0196-8
[14] N. Kubota, “Propellants and Explosives,” 2nd Edition, Wiley-VCH, Weinheim, 2007.
[15] G. Parmentier, “Synthèse des Résultats Expérimentaux Relatifs aux Détonations d’Explosifs Sphériques,”Institut Franco-Allemand de Recherche de Saint-Louis, 1993.
[16] J. D. Ornellas, “The Heat and Products of Detonation of Cyclotatramethylenetetranitramine, 2,4,6-Trinitrotoluene, Nitromethane, and Bis[2,2-dinitro-2-fluoroethyl]formal,” Journal Physical Chem-istry, Vol. 72, No. 7, 1968, pp. 2390-2394. doi:10.1021/j100853a019
[17] R. Meyer, “Explosives,” 3rd Edition, VCH-Verlag, Weinheim, 1987.
[18] National Institute of Standards and Technology, National Institute of Standards and Technology. www.nist.gov/
[19] C. M. Tarver, T. D. Tran and R. E. Whipple, “Thermal Decomposition of Pentae-rythritol Tetranitrate,” Propellants Explosives Pyrotechnics, Vol. 28, No. 4, 2003, pp. 189-193. doi:10.1002/prep.200300004
[20] American Society for testing and Materials (ASTM), The ASTM Computer Program for Chemical Thermodynamic and Energy Release Evaluation CHETAH 7.3, 2001.
[21] NASA Lewis Research Center. http://www.me.berkeley.edu/gri_mech/data/thermo_table.html
[22] P. W. Cooper, “Explosives Engineering,” Wiley-VCH, Weinheim, 1996.
[23] M. Finger, E. Lee, F. H. Helm, B. Hayes, H. Horning, R. McGuine, M. Kahara and M. Guidry, “The Effects of Elemental Composition on the Detonation Be-havior of Explosives,” Sixth Symposium (International) on Detonation, ACR-221, 1976, p. 710.
[24] J. Yinon and S. Zitrin, “Modern Methods and Applications in Analysis of Ex-plosive,” Wiley, Hoboken, 1996.
[25] TM5-855-1, “Fundamentals of Protective Design for Conventional Weapons,” US Department of the Army, Washington DC, 1987.
[26] TM5-1300, “The Design of Structures to Resist the Effects of Accidental Explosions,” Technical Manual, US De-partment of the Army, the Navy and the Air Force, Washington DC, 1990,
[27] AUTODYN, Software for Non-Linear Dy-namics, Proprietary to ANSYS.
[28] ASIDE, Forensic Software Database for Crime Scene Investigation, Proprietary of IRCGN.
[29] E. D. Esparza, “Blast Measurements and Equivalency for Spherical Charges at Small Scaled Distances,” International Journal of Impact Engineering, Vol. 4, No. 1, 1986, pp. 23-40. doi:10.1016/0734-743X(86)90025-4
[30] R. Jeremié and Z. Bajié, “An Approach to Determining the TNT Equivalent of High Explosives,” Scientific Technical Review, Vol. 56, No.1, 2006, pp. 58-62.
[31] F. Peugeot, E. Deschalbault and P. F. Péron, “TNT Equivalency: Misconceptions and Reality, Munitions Safety Information Analysis Center,” Munitions Safety Information Analysis Center (MSIAC) Unclassified, Report L-132, October 2006.
[32] Allied Ammunition Storage and Transport Publication (AASTP), 4, Explosives Safety Risks Analysis, Part II, AC/258(ST)WP/221, 2003.
[33] S. A. Formby and R. K. Wharton, “Blast Characteristics and TNT Equivalence Values for Some Commercial Explosives Detonated at Ground Level,” Journal of Hazardous Materials, Vol. 50, No. 2-3, 1996, pp. 183-198. doi:10.1016/0304-3894(96)01791-8
[34] R. K. Wharton, S. A. Formby and R. Merrifield, “Airblast TNT Equivalence for a Range of Commercial Blasting Explosives,” Journal of Hazardous Materials, Vol. 79, No. 1-2, 2000, pp. 31-39. doi:10.1016/S0304-3894(00)00168-0
[35] P. Naz, “Etude de Souffle des Têtes Explosives. Etude Bibliographique,” Institut Franco-Allemand de Recherche de Saint-Louis, Saint-Louis, 2005.
[36] J. Mory, R. Branka, “Les Equivalents TNT des Explosifs Intentionnels et des Produits Chimiques Condensés Solides ou Liquides à Risque d’Explosion,”Europyro 8th Congrès International de Pyrotechnie, Saint-Malo, 23-27 June 2003, pp. 407-440.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.