[1]
|
Kurtzke, J.F. (1983) Rating neurologic impairment in multiple sclerosis: An expanded disability status scale (EDSS). Neurology, 33, 1444-1452.
|
[2]
|
Rasoul, K., Mansur, V., Farzad, T., Massood Nabavi., S. (2008) Fully automatic segmentation of multiple sclero-sis lesions in brain MR FLAIR images using adaptive mixtures method and Markov random field model. Com-puters in Biology and Medicine, 38, 379-390. doi:10.1016/j.compbiomed.2007.12.005
|
[3]
|
Polman, C.H., Reingold, S.C., Edan, G., Fillippi, M., Hartung, HP. and Kappos, L. (2005) Diagnostic criteria for MS 2005 revisions to the MC Donald criteria. Annals of Neurology, 58, 840-846. doi:10.1002/ana.20703
|
[4]
|
Edelman, R.R., Hesselink, J.R. and Zlatkin, M.B. (2006) Clinical magnetic resonance imaging. 3rd Edition, Saun-ders, Philadelphia, 1571-1615.
|
[5]
|
Anbeek, P., Vincken, K.L., van Osch, M.J.P., Bisschops, R.H.C. and Van der Grond, J. (2004) Probabilistic seg-mentation of white matter lesions in MR imaging, NeuroImage, 21, 1037-1044. doi:10.1016/j.neuroimage.2003.10.012
|
[6]
|
Khayati, R. (2006) Quantification of multiple sclerosis lesions based on fractal analysis. PhD Thesis, Technical Report No. 1: Fully automatic object oriented brain seg-mentation in MRI. Amirkabir University of Technology, Tehran.
|
[7]
|
Duda, R.O., Hart, P.E. and Stork, D.G. (2001) Pattern classification. 2nd Edition, Wiley, New York.
|
[8]
|
Bernardo, J.M. and Smith, A.F.M. (1994) Bayesian the-ory. Wiley, New York. doi:10.1002/9780470316870
|
[9]
|
Dempster, A.P., Laird, N.M. and Rubin, D.B. (1997) Maximun likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Soceity B, 39, 1-38. doi:10.1.1.133.4884
|
[10]
|
Shannon, C. (1948) A mathematical theory of communi-cation. Bell System Technical Journal, 27, 379-423.
|
[11]
|
Cover, T.M. and Thomas, J.A. (1991) Elements of infor-mation theory. Wiley & Sons, New York. doi:10.1002/0471200611
|
[12]
|
Renyi, A. (1961) On measures of entropy and informa-tion. University California Press, Berkeley, 547-561.
|
[13]
|
Leonenko, N., Pronzato, L. and Savani, V. (2008) A class of Rényi information estimators for multidimensional densities. Annals of Statistics, 36, 2153-2182. doi:10.1214/07-AOS539
|
[14]
|
Kozachenko, L. and Leonenko, N. (1987) On statistical estimation of entropy of a random vector. Problems In-formation Transmission, 23, 95101.
|
[15]
|
Jones, M. and Sibson, R. (1987) What is projection pur-suit. Journal of the Royal Statistical Society: Series A, 150, 136. http://www.jstor.org/stable/2981662
|
[16]
|
Benavent, A.P. Ruiz, F.E. and Sáez, J.M. (2009) Learning Gaussian mixture models with entropy-based criteria. IEEE Transactions on Neural Networks, 20, 1756-1771. doi:10.1109/TNN.2009.2030190
|
[17]
|
Richardson, S. and Green, P. (1991) On Bayesian analy-sis of mixtures with an unknown number of components (with discussion). Journal of the Royal Statistical Society:
Series B, 59, 731-792. doi:10.1111/1467-9868.00095
|
[18]
|
Dellaportas, P. and Papageorgiou, I. (2006) Multivariate mixtures of normals with unknown number of compo-nents. Statistics and Computing, 16, 57-68. doi:10.1007/s11222-006-5338-6
|
[19]
|
Mitchell, T.M. (1997) Machine Learning. McGraw-Hill, Boston. doi:10.1036/0070428077
|
[20]
|
Li, S.Z. (2001) Markov random field modeling in image analysis. Springer, Tokyo.
|
[21]
|
Held, K., Kops, E.R., Krause, B.J., Wells, W.M., Kikinis, R. and Mller-Grtner, H.W. (1997) Markov random field segmentation of brain MR images. IEEE Transactions on Medical Imaging, 16, 878-886. doi:10.1109/42.650883
|
[22]
|
Geman, D., Geman, S., Graffigne, C. and Dong, P. (1990) Boundary detection by constrained optimization, IEEE Transactions on Pattern Analysis and Machine Intelli-gence, PAMI-12, 609-628. doi:10.1109/34.56204
|
[23]
|
Therrien, C.W. (1989) Decision, estimation, and classifi-cation. Wiley, New York.
|
[24]
|
Nett, J.M. (2001) The study of MS using MRI, image processing, and visualization. Master’s Thesis, Univer-sity of Louisville, Louisville.
|
[25]
|
Zijdenbos, A.P., Dawant, B.M., Margolin, R.A. and Palmer, A.C. (1994) Morphometric analysis of white matter lesions in MR images: Method and validation. IEEE Transactions on Medical Imaging, 13, 716-724. doi:10.1109/42.363096
|
[26]
|
Stokking, R., Vincken, K.L. and Viergever, M.A. (2000) Automatic morphologybased brain segmentation (MBRASE) from MRI-T1 data. NeuroImage, 12, 726-738. doi:10.1006/nimg.2000.0661
|
[27]
|
Johnston, B., Atkins, M.S., Mackiewich, B. and Ander-son, M. (1996) Segmentation of multiple sclerosis lesions in intensity corrected multispectral MRI. IEEE Transac-tions on Medical Imaging, 15, 154-169. doi:10.1109/42.491417
|
[28]
|
Boudraa, A.O., Dehakb, S.M.R., Zhu, Y.M., Pachai, C., Bao, Y.G. and Grimaud, J. (2000) Automated segmenta-tion of multiple sclerosis lesions in multispectral MR imaging using fuzzy clustering. Computers in Biology and Medicine, 30, 23-40. doi:10.1016/S0010-4825(99)00019-0
|
[29]
|
Leemput, K.V., Maes, F., Vandermeulen, D., Colchester, A. and Suetens, P. (2001) Automated segmentation of multiple sclerosis lesions by model outlier detection. IEEE Transactions on Medical Imaging, 20, 677-688. doi:10.1109/42.938237
|
[30]
|
Zijdenbos, A.P., Forghani, R. and Evans. A.C. (2002) Automatic pipeline analysis of 3-D MRI data for clinical trials: Application to multiple sclerosis. IEEE Transac-tions on Medical Imaging, 21, 1280-1291. doi:10.1109/TMI.2002.806283
|
[31]
|
Bartko, J.J. (1991) Measurement and reliability: statisti-cal thinking considerations. Schizophrenia Bulletin, 17, 483-489. doi:10.1093/schbul/17.3.483
|