[1]
|
Sampson, L., Rimm, E., Hollman, P.C., de Vries, J.H. and Katan, M.B. (2002) Flavonol and Flavone Intakes in US Health Professionals. Journal of the American Dietetic Association, 102, 1414-1420. http://dx.doi.org/10.1016/S0002-8223(02)90314-7
|
[2]
|
Ross, J.A. and Kasum, C.M. (2002) Dietary Flavonoids: Bioavailability, Metabolic Effects, and Safety. Annual Review of Nutrition, 22, 19-34. http://dx.doi.org/10.1146/annurev.nutr.22.111401.144957
|
[3]
|
Shih, H., Pickwell, G.V. and Quattrochi, L.C. (2000) Differential Effects of Flavonoid Compounds on Tumor Promoter-Induced Activation of the Human CYP1A2 Enhancer. Archives of Biochemistry and Biophysics, 373, 287-294. http://dx.doi.org/10.1006/abbi.1999.1550
|
[4]
|
Ferraresi, R., Troiano, L., Roat, E., Lugli, E., Nemes, E., Nasi, M., Pinti, M., Fernandez, M.I., Cooper, E.L. and Cossarizza, A. (2005) Essential Requirement of Reduced Glutathione (GSH) for the Anti-Oxidant Effect of the Flavonoid Quercetin. Free Radical Research, 39, 1249-1258. http://dx.doi.org/10.1080/10715760500306935
|
[5]
|
Markham, K.R. (1989) Flavones, Flavonols and Their Glycosides. Methods in Plant Biochemistry, 1, 197-235. http://dx.doi.org/10.1016/B978-0-12-461011-8.50012-3
|
[6]
|
Gugler, R., Leschik, M. and Dengler, H.J. (1975) Disposition of Quercetin in Man after Single Oral and Intravenous Doses. European Journal of Clinical Pharmacology, 9, 229-234. http://dx.doi.org/10.1007/BF00614022
|
[7]
|
Walle, T., Walle, U.K. and Halushka, P.V. (2001) Carbon Dioxide Is the Major Metabolite of Quercetin in Humans. Journal of Nutrition, 131, 2648-2652.
|
[8]
|
Boots, A.W., Haenen, G.R. and Bast, A. (2008) Health Effects of Quercetin: From Antioxidant to Nutraceutical. European Journal of Pharmacology, 585, 325-337. http://dx.doi.org/10.1016/j.ejphar.2008.03.008
|
[9]
|
Manach, C., Williamson, G., Morand, C., Scalbert, A. and Remesy, C. (2005) Bioavailability and Bioefficacy of Polyphenols in Humans. Review of 97 Bioavailability Studies. The American Journal of Clinical Nutrition, 81, 230S-242S.
|
[10]
|
de Souza, R.F. and De Giovani, W.F. (2004) Antioxidant Properties of Complexes of Flavonoids with Metal Ions. Redox Report, 9, 97-104. http://dx.doi.org/10.1179/135100004225003897
|
[11]
|
Heijnen, C.G., Haenen, G.R.M.M., Oostveen, R.M., Stalpers, E.M. and Bast, A. (2002) Protection of Flavonoids against Lipid Peroxidation: The Structure Activity Relationship Revisited. Free Radical Research, 36, 575-581. http://dx.doi.org/10.1080/10715760290025951
|
[12]
|
Hanasaki, Y., Ogawa, S. and Fukui, S. (1994) The Correlation between Active Oxygens Scavenging and Antioxidative Effects of Flavonoids. Free Radical Biology & Medicine, 16, 845-850. http://dx.doi.org/10.1016/0891-5849(94)90202-X
|
[13]
|
Cushnie, T.P. and Lamb, A.J. (2005) Antimicrobial Activity of Flavonoids. International Journal of Antimicrobial Agents, 26, 343-356. http://dx.doi.org/10.1016/j.ijantimicag.2005.09.002
|
[14]
|
van Acker, S.A., Tromp, M.N., Haenen, G.R.M.M., van der Vijgh, W.J. and Bast, A. (1995) Flavonoids as Scavengers of Nitric Oxide Radical. Biochemical and Biophysical Research Communications, 214, 755-759. http://dx.doi.org/10.1006/bbrc.1995.2350
|
[15]
|
Haenen, G.R.M.M. and Bast, A. (1999) Nitric Oxide Radical Scavenging of Flavonoids. Methods in Enzymology, 301, 490-503. http://dx.doi.org/10.1016/S0076-6879(99)01112-X
|
[16]
|
Haenen, G.R.M.M., Paquay, J.B., Korthouwer, R.E. and Bast, A. (1997) Peroxynitrite Scavenging by Flavonoids. Biochemical and Biophysical Research Communications, 236, 591-593. http://dx.doi.org/10.1006/bbrc.1997.7016
|
[17]
|
Heijnen, C.G., Haenen, G.R.M.M., van Acker, F.A., van der Vijgh, W.J. and Bast, A. (2001) Flavonoids as Peroxynitrite Scavengers: The Role of the Hydroxyl Groups. Toxicology in Vitro, 15, 3-6. http://dx.doi.org/10.1016/S0887-2333(00)00053-9
|
[18]
|
Hollman, P.C.H. and Katan, M.B. (1997) Absorption, Metabolism and Health Effects of Dietary Flavonoids in Man. Biomedicine & Pharmacotherapy, 51, 305-310. http://dx.doi.org/10.1016/S0753-3322(97)88045-6
|
[19]
|
Sakanashi, Y., Oyama, K., Matsui, H., Oyama, T.B., Oyama, T.M., Nishimura, Y., Sakai, H. and Oyama, Y. (2008) Possible Use of Quercetin, an Antioxidant, for Protection of Cells Suffering from Overload of Intracellular Ca2+: A Model Experiment. Life Sciences, 83, 164-169. http://dx.doi.org/10.1016/j.lfs.2008.05.009
|
[20]
|
Ansari, M.A., Hafiz, M.A., Joshi, G., Opii, W.O. and Butterfield, D.A. (2009) Protective Effect of Quercetin in Primary Neurons against Aβ (1-42): Relevance to Alzheimer’s Disease. The Journal of Nutritional Biochemistry, 20, 269-275. http://dx.doi.org/10.1016/j.jnutbio.2008.03.002
|
[21]
|
Balazs, L. and Leon, M. (1994) Evidence of an Oxidative Challenge in the Alzheimer’s Brain. Neurochemical Research, 19, 1131-1137. http://dx.doi.org/10.1007/BF00965146
|
[22]
|
Galati, G., Moridani, M.Y., Chan, T.S. and O’Brien, P.J. (2001) Peroxidative Metabolism of Apigenin and Naringenin versus Luteolin and Quercetin: Glutathione Oxidation and Conjugation. Free Radical Biology & Medicine, 30, 370-382. http://dx.doi.org/10.1016/S0891-5849(00)00481-0
|
[23]
|
Hollman, P.C. and Katan, M.B. (1999) Dietary Flavonoids: Intake, Health Effects and Bioavailability. Food and Chemical Toxicology, 37, 937-942. http://dx.doi.org/10.1016/S0278-6915(99)00079-4
|
[24]
|
Skibola, C.F. and Smith, M.T. (2000) Potential Health Impacts of Excessive Flavonoid Intake. Free Radical Biology & Medicine, 29, 375-383. http://dx.doi.org/10.1016/S0891-5849(00)00304-X
|
[25]
|
Yang, C.S. and Wang, Z.-Y. (1993) Tea and Cancer. Journal of the National Cancer Institute, 85, 1038-1049. http://dx.doi.org/10.1093/jnci/85.13.1038
|
[26]
|
IARC (International Agency for Research on Cancer) (1988) Monographs on the Evaluation of Carcinogenic Risks to Humans. Vol. 44: Alcohol Drinking, IARC, Lyon.
|
[27]
|
Longnecker, M.P., Orza, M.J., Adams, M.E., Vioque, J. and Chalmers, T.-C. (1990) A Meta-Analysis of Alcoholic Beverage Consumption in Relation to Risk of Colorectal Cancer. Cancer Causes & Control, 1, 59-68. http://dx.doi.org/10.1007/BF00053184
|
[28]
|
Dorant, E. (1994) Onion and Leek Consumption, Garlic Supplement Use and the Incidence of Cancer. PhD Thesis, University of Limburg, Maastricht.
|
[29]
|
Tan, W.F., Lin, L.P., Li, M.H., Zhang, Y.X., Tong, Y.G., et al. (2003) Quercetin, a Dietary Derived Flavonoid, Possesses Antiangiogenic Potential. European Journal of Pharmacology, 459, 255-262. http://dx.doi.org/10.1016/S0014-2999(02)02848-0
|
[30]
|
Noori-Daloii, M.R., Momeny, M., Yousefi, M., Shirazi, F.G., Yaseri, M., et al. (2011) Multifaceted Preventive Effects of Single Agent Quercetin on a Human Prostate Adenocarcinoma Cell Line (PC-3): Implications for Nutritional Transcriptomics and Multi-Target Therapy. Medical Oncology, 28, 1395-1404. http://dx.doi.org/10.1007/s12032-010-9603-3
|
[31]
|
Ranelletti, F.O., Ricci, R., Larocca, L.M., Maggiano, N., Capelli, A., et al. (1992) Growth-Inhibitory Effect of Quercetin and Presence of Type-II Estrogenbinding Sites in Human Colon-Cancer Cell Lines and Primary Colorectal Tumors. International Journal of Cancer, 50, 486-492. http://dx.doi.org/10.1002/ijc.2910500326
|
[32]
|
Caltagirone, S., Ranelletti, F.O., Rinelli, A., Maggiano, N., Colasante, A., et al. (1997) Interaction with Type II Estrogen Binding Sites and Antiproliferative Activity of Tamoxifen and Quercetin in Human Non-Small-Cell Lung Cancer. American Journal of Respiratory Cell and Molecular Biology, 17, 51-59. http://dx.doi.org/10.1165/ajrcmb.17.1.2728
|
[33]
|
Tanako, K., Ono, T. and Umeda, M. (1987) Pleiotropic Effects of Quercetin on the Transformation of Balb 3T3 Cells. Japanese Journal of Cancer Research, 78, 819-825.
|
[34]
|
Mukhtar, H., Das, M., Khan, W.A., Wang, Z.Y., Bik, D.P. and Bickers, D.R. (1988) Exceptional Activity of Tannic Acid among Naturally Occurring Plant Phenols in Protecting against 7,12-Dimethylbenz(a)anthracene-, benzo(a)pyrene, 3-Methylcholanthrene-, and N-Methylnitroso Urea-Induced Skin Tumorigenesis in Mice. Cancer Research, 48, 2361-2365.
|
[35]
|
Aizu, E., Nakadata, T. and Yamamoto, S. (1986) Inhibition of 12-O-tetradecaaoylphorbol-13-acetate Mediated Epidermal Ornithine Decarboxylase Induction and Skin Tumor Promotion by New Lipoxygenase Inhibitors Lacking Protein Kinase C Inhibitory Effects. Carcinogenesis, 7, 1809-1812. http://dx.doi.org/10.1093/carcin/7.11.1809
|
[36]
|
Notarnicola, M., Messa, C., Orlando, A., Bifulco, M., Laezza, C., Gazzerro, P. and Caruso, M.G. (2008) Estrogenic Induction of Cannabinoid CB1 Receptor in Human Colon Cancer Cell Lines. Scandinavian Journal of Gastroenterology, 43, 66-72. http://dx.doi.org/10.1080/00365520701559011
|
[37]
|
Di Leo, A., Messa, C., Cavallini, A. and Linsalata, M. (2001) Estrogens and Colorectal Cancer. Current Drug Targets. Immune Endocrine & Metabolic Disorders, 1, 1-12. http://dx.doi.org/10.2174/1568008013341749
|
[38]
|
De Petrocellis, L., Melck, D., Palmisano, A., Bisogno, T., Laezza, C., Bifulco, M. and Di Marzo, V. (1998) The Endogenous Cannabinoid Anandamide Inhibits Human Breast Cancer Cell Proliferation. Proceedings of the National Academy of Sciences of the United States of America, 95, 8375-8380. http://dx.doi.org/10.1073/pnas.95.14.8375
|
[39]
|
Bremner, P. and Heinrich, M. (2002) Natural Products as Targeted Modulators of the Nuclear Factor-KappaB Pathway. Journal of Pharmacy and Pharmacology, 54, 453-472. http://dx.doi.org/10.1211/0022357021778637
|
[40]
|
Nam, N.H. (2006) Naturally Occurring NF-KappaB Inhibitors. Mini-Reviews in Medicinal Chemistry, 6, 945-951. http://dx.doi.org/10.2174/138955706777934937
|
[41]
|
Min, Y.D., Choi, C.H., Bark, H., et al. (2007) Quercetin Inhibits Expression of Inflammatory Cytokines through Attenuation of NF-KappaB and p38 MAPK in HMC-1 Human Mast Cell Line. Inflammation Research, 56, 210-215. http://dx.doi.org/10.1007/s00011-007-6172-9
|
[42]
|
Hishikawa, K. and Nakaki, T. (2001) NF-KappaB as a Therapeutic Drug Target. Nihon Yakurigaku Zasshi, 118, 197-202. (In Japanese) http://dx.doi.org/10.1254/fpj.118.197
|
[43]
|
Schneider, G. and Kramer, O.H. (2011) NFκB/p53 Crosstalk—A Promising New Therapeutic Target. Biochimica et Biophysica Acta, 1815, 90-103. http://dx.doi.org/10.1016/j.bbcan.2010.10.003
|
[44]
|
Perkins, N.D. (2007) Integrating Cell Signaling Pathways with NF-κB and IKK Function. Nature Reviews Molecular Cell Biology, 8, 49-62.
|
[45]
|
Kim, Y.H. and Lee, Y.J. (2007) TRAIL Apoptosis Is Enhanced by Quercetin through Akt Dephosphorylation. Journal of Cellular Biochemistry, 100, 998-1009. http://dx.doi.org/10.1002/jcb.21098
|
[46]
|
Wang, K., Liu, R., Li, J., et al. (2011) Quercetin Induces Protective Autophagy in Gastric Cancer Cells: Involvement of Akt-mTOR and Hypoxia-Induced Factor 1α-Mediated Signaling. Autophagy, 7, 966-978. http://dx.doi.org/10.4161/auto.7.9.15863
|
[47]
|
Gupta, S.C., Kim, J.H., Prasad, S. and Aggarwal, B.B. (2010) Regulation of Survival, Proliferation, Invasion, Angiogenesis, and Metastasis of Tumor Cells through Modulation of Inflammatory Pathways by Nutraceuticals. Cancer and Metastasis Reviews, 29, 405-434. http://dx.doi.org/10.1007/s10555-010-9235-2
|
[48]
|
Vargas, A.J., Sittadjody, S., Thangasamy, T., Mendoza, E.E., Limesand, K.H. and Burd, R. (2011) Exploiting Tyrosinase Expression and Activity in Melanocytic Tumors: Quercetin and the Central Role of p53. Integrative Cancer Therapies, 10, 328-340. http://dx.doi.org/10.1177/1534735410391661
|
[49]
|
Kong, D., Zhang, Y., Yamori, T., Duan, H. and Jin, M. (2011) Inhibitory Activity of Flavonoids against Class I Phosphatidylinositol 3-Kinase Isoforms. Molecules, 16, 5159-5167. http://dx.doi.org/10.3390/molecules16065159
|
[50]
|
Hou, D.X. and Kumamoto, T. (2010) Flavonoids as Protein Kinase Inhibitors for Cancer Chemoprevention: Direct Binding and Molecular Modeling. Antioxidants & Redox Signaling, 13, 691-719. http://dx.doi.org/10.1089/ars.2009.2816
|
[51]
|
Hwang, M.K., Song, N.R., Kang, N.J., Lee, K.W. and Lee, H.J. (2009) Activation of Phosphatidylinositol 3-Kinase Is Required for Tumor Necrosis Factor-Alpha-Induced Upregulation of Matrix Metalloproteinase-9: Its Direct Inhibition by Quercetin. The International Journal of Biochemistry & Cell Biology, 41, 1592-1600. http://dx.doi.org/10.1016/j.biocel.2009.01.014
|
[52]
|
Chirumbolo, S. (2010) The Role of Quercetin, Flavonols and Flavones in Modulating Inflammatory Cell Function. Inflamm Allergy—Drug Targets, 9, 263-285. http://dx.doi.org/10.2174/187152810793358741
|
[53]
|
Kim, S.H., Yeo, G.S., Lim, Y.S., Kang, C.D., Kim, C.M. and Chung, B.S. (1998) Suppression of Multidrug Resistance via Inhibition of Heat Shock Factor by Quercetin in MDR Cells. Experimental & Molecular Medicine, 30, 87-92. http://dx.doi.org/10.1038/emm.1998.13
|
[54]
|
Oh, S.J., Kim, O., Lee, J.S., et al. (2010) Inhibition of Angiogenesis by Quercetin in Tamoxifen-Resistant Breast Cancer Cells. Food and Chemical Toxicology, 48, 3227-3234. http://dx.doi.org/10.1016/j.fct.2010.08.028
|
[55]
|
Shen, J., Zhang, W., Wu, J. and Zhu, Y. (2008) The Synergistic Reversal Effect of Multidrug Resistance by Quercetin and Hyperthermia in Doxorubicin-Resistant Human Myelogenous Leukemia Cells. International Journal of Hyperthermia, 24, 151-159. http://dx.doi.org/10.1080/02656730701843109
|
[56]
|
Sliutz, G., Karlseder, J., Tempfer, C., Orel, L., Holzer, G. and Simon, M.M. (1996) Drug Resistance against Gemcitabine and Topotecan Mediated by Constitutive hsp70 Overexpression in Vitro: Implication of Quercetin as Sensitiser in Chemotherapy. British Journal of Cancer, 74, 172-177. http://dx.doi.org/10.1038/bjc.1996.334
|
[57]
|
Thangasamy, T., Sittadjody, S., Mitchell, G.C., Mendoza, E.E., Radhakrishnan, V.M., Limesand, K.H. and Burd, R. (2010) Quercetin Abrogates Chemoresistance in Melanoma Cells by Modulating ΔNp73. BMC Cancer, 10, 282. http://dx.doi.org/10.1186/1471-2407-10-282
|
[58]
|
Wang, H., Tao, L., Qi, K., Zhang, H., Feng, D., Wei, W., Kong, H., Chen, T. and Lin, Q. (2015) Quercetin Reverses Tamoxifen Resistance in Breast Cancer Cells. Journal of BUON, 20, 707-713.
|
[59]
|
Scambia, G., Raneletti, F.O., Panici, P.B., et al. (1992) Inhibitory Effect of Quercetin on Primary Ovarian and Endometrial Cancers and Synergistic Activity with Cis-Diamminedichloroplatinum(II). Gynecologic Oncology, 45, 13-19. http://dx.doi.org/10.1016/0090-8258(92)90484-Z
|
[60]
|
Scambia, G., Raneletti, F.O., Panici, P.B., Bonanno, G., De Vincenzo, R., Piantelli, M. and Mancuso, S. (1990) Synergistic Antiproliferative Activity of Quercetin and Cisplatin on Ovarian Cancer Cell Growth. Anticancer Drugs, 1, 45-48. http://dx.doi.org/10.1097/00001813-199010000-00008
|
[61]
|
Akbas, S.H., Timur, M. and Ozben, T. (2005) The Effect of Quercetin on Topotecan Cytotoxicity in MCF-7 and MDA-MB 231 Human Breast Cancer Cells. Journal of Surgical Research, 125, 49-55. http://dx.doi.org/10.1016/j.jss.2004.11.011
|
[62]
|
Borska, S., Gebarowska, E., Wysocka, T., et al. (2004) The Effects of Quercetin vs Cisplatin on Proliferation and the Apoptotic Process in A549 and SW1271 Cell Lines in in Vitro Conditions. Folia Morphologica, 63, 103-105.
|
[63]
|
Du, G., Lin, H., Yang, Y., et al. (2010) Dietary Quercetin Combining Intratumoral Doxorubicin Injection Synergistically Induces Rejection of Established Breast Cancer in Mice. International Immunopharmacology, 10, 819-826. http://dx.doi.org/10.1016/j.intimp.2010.04.018
|
[64]
|
Jakubowicz-Gil, J., Paduch, R., Piersiak, T., et al. (2005) The Effect of Quercetin on Pro-Apoptotic Activity of Cisplatin in HeLa Cells. Biochemical Pharmacology, 69, 1343-1350. http://dx.doi.org/10.1016/j.bcp.2005.01.022
|
[65]
|
Li, W., Shen, F. and Weber, G. (1999) Ribavirin and Quercetin Synergistically Downregulate Signal Transduction and Are Cytotoxic in Human Ovarian Carcinoma Cells. Oncology Research, 11, 243-247.
|
[66]
|
Piantelli, M., Tatone, D., Castrilli, G., et al. (2001) Quercetin and Tamoxifen Sensitize Human Melanoma Cells to Hyperthermia. Melanoma Research, 11, 469-476. http://dx.doi.org/10.1097/00008390-200110000-00005
|
[67]
|
Scambia, G., Ranelletti, F.O., Panici, P.B., et al. (1991) Quercetin Inhibits the Growth of a Multidrug-Resistant Estrogen-Receptor Negative MCF-7 Human Breast-Cancer Cell Line Expressing Type II Estrogen Binding Sites. Cancer Chemotherapy and Pharmacology, 28, 255-258. http://dx.doi.org/10.1007/BF00685531
|
[68]
|
Scambia, G., Ranelletti, F.O., Panici, P.B., et al. (1994) Quercetin Potentiates the Effect of Adriamycin in a Multidrug-Resistant MCF-7 Human Breast-Cancer Cell Line: P-Glycoprotein as a Possible Target. Cancer Chemotherapy and Pharmacology, 34, 459-464. http://dx.doi.org/10.1007/BF00685655
|
[69]
|
Sharma, H., Sen, S. and Singh, N. (2005) Molecular Pathways in the Chemosensitization of Cisplatin by Quercetin in Human Head and Neck Cancer. Cancer Biology & Therapy, 4, 949-955. http://dx.doi.org/10.4161/cbt.4.9.1908
|
[70]
|
Shen, F. and Weber, G. (1997) Synergistic Action of Quercetin and Genistein in Human Ovarian Carcinoma Cells. Oncology Research, 9, 597-602.
|
[71]
|
Staedler, D., Idrizi, E., Kenzaoui, B.H. and Juillerat-Jeanneret, L. (2011) Drug Combinations with Quercetin: Doxorubicin plus Quercetin in Human Breast Cancer Cells. Cancer Chemotherapy and Pharmacology, 68, 1161-1172. http://dx.doi.org/10.1007/s00280-011-1596-x
|
[72]
|
Václavíková, R., Kondrová, E., Ehrlichová, M., et al. (2008) The Effect of Flavonoid Derivatives on Doxorubicin Transport and Metabolism. Bioorganic & Medicinal Chemistry, 16, 2034-2042. http://dx.doi.org/10.1016/j.bmc.2007.10.093
|
[73]
|
Yeh, Y.A., Herenyiova, M. and Weber, G. (1995) Quercetin: Synergistic Action with Carboxyamidotriazole in Human Breast Carcinoma Cells. Life Sciences, 57, 1285-1292. http://dx.doi.org/10.1016/0024-3205(95)02085-W
|
[74]
|
Baek, S.H., Lee, U.Y., Park, E.M., Han, M.Y., Lee, Y.S. and Park, Y.M. (2001) Role of Protein Kinase Cδ in Transmitting Hypoxia Signal to HSF and HIF-1. Journal of Cellular Physiology, 188, 223-235. http://dx.doi.org/10.1002/jcp.1117
|
[75]
|
Lin, C.W., Hou, W.C., Shen, S.C., Juan, S.H., Ko, C.H., Wang, L.M. and Chen, Y.C. (2008) Quercetin Inhibition of Tumor Invasion via Suppressing PKC delta/ERK/AP-1-Dependent Matrix Metalloproteinase-9 Activation in Breast Carcinoma Cells. Carcinogenesis, 29, 1807-1815. http://dx.doi.org/10.1093/carcin/bgn162
|
[76]
|
Maurya, A.K. and Vinayak, M. (2015) Modulation of PKC Signaling and Induction of Apoptosis through Suppression of Reactive Oxygen Species and Tumor Necrosis Factor Receptor 1 (TNFR1): Key Role of Quercetin in Cancer Prevention. Tumor Biology, 36, 8913-8924. http://dx.doi.org/10.1007/s13277-015-3634-5
|
[77]
|
Hu, C.T., Wu, J.R., Cheng, C.C., Wang, S., Wang, H.T., Lee, M.C., et al. (2011) Reactive Oxygen Species-Mediated PKC and Integrin Signaling Promotes Tumor Progression of Human Hepatoma HepG2. Clinical & Experimental Metastasis, 28, 851-863. http://dx.doi.org/10.1007/s10585-011-9416-6
|
[78]
|
Aspects, D., Giorgi, C., Agnoletto, C., Baldini, C., Bononi, A., Bonora, M., et al. (2010) Redox Control of Protein Kinase C: Cell- and Disease-Specific Aspects. Antioxidants & Redox Signaling, 13, 1051-1085. http://dx.doi.org/10.1089/ars.2009.2825
|
[79]
|
Gopalakrishna, R. and Gundimeda, U. (2002) Antioxidant Regulation of Protein Kinase C in Cancer Prevention. Journal of Nutrition, 132, 3819-3823.
|
[80]
|
Mukherjee, A. and Khuda-Bukhsh, A.R. (2015) Quercetin Down-Regulates IL-6/STAT-3 Signals to Induce Mitochondrial-Mediated Apoptosis in a Non-Small-Cell Lung Cancer Cell Line, A549. Journal of Pharmacopuncture, 18, 19-26. http://dx.doi.org/10.3831/KPI.2015.18.002
|
[81]
|
Chen, C., Zhou, J. and Ji, C. (2010) Quercetin: A Potential Drug to Reverse Multidrug Resistance. Life Sciences, 87, 333-338. http://dx.doi.org/10.1016/j.lfs.2010.07.004
|
[82]
|
Larocca, L.M., Teofili, L., Sica, S., Piantelli, M., Maggiano, N., Leone, G. and Ranelletti, F.O. (1995) Quercetin Inhibits the Growth of Leukemic Progenitors and Induces the Expression of Transforming Growth Factor-Beta 1 in These Cells. Blood, 85, 3654-3661.
|
[83]
|
Keller, J.R., Jacobsen, S.E.W., Dubois, C.M., Hestdal, K. and Ruscetti, F.W. (1992) Trasforming Growth Factor Beta: A Bidiretional Regulator of Hematopoietic Cell Growth. The International Journal of Cell Cloning, 10, 2-11. http://dx.doi.org/10.1002/stem.5530100103
|
[84]
|
Bonewald, L.F. (1992) Can Transforming Growth Factor Beta Be Useful as a Protective Agent for Pluripotent Hematopoietic Progenitor Cells? Experimental Hematology, 20, 1249-1251.
|
[85]
|
Jacobsen, S.E.W., Ruscetti, F.W., Roberts, A.B. and Keller, J.R. (1993) TGFp Is a Bidirectional Modulator of Cytokine Receptor Expression on Murine Bone Marrow Cells. Differential Effects of TGF-PI and TGFp3. The Journal of Immunology, 151, 4534-4544.
|
[86]
|
Aglietta, M., Stacchini, A., Severino, A., Sanavio, F., Ferrando, M.L. and Piacibello, W. (1989) Interaction of Transforming Growth Factor-Beta 1 with Hematopoietic Growth Factors in the Regulation of Human Normal and Leukemic Myelopoiesis. Experimental Hematology, 17, 296-299.
|
[87]
|
Jacobsen, S.E.W., Keller, J.R., Ruscetti, F.W., Kondaiah, P., Roberts, A.B. and Falk, L.A. (1991) Bidirectional Effects of TGF-P on Colony-Stimulating Factor Induced Human Myelopoiesis in Vitro: Differential Effects of Distinct TGF-P Isoforms. Blood, 78, 2239-2247.
|
[88]
|
Hatzfeld, J., Li, M.L., Brown, E.L., Sookdeo, H., Levesque, J.P., O’Toole, T., Gurney, C., Clark, S.C. and Hatzfeld, A. (1991) Release of Early Hematopoietic Progenitors from Quiescence by Antisense Transforming Growth Factor p1 or Rb Oligonucleotides. The Journal of Experimental Medicine, 174, 925-929. http://dx.doi.org/10.1084/jem.174.4.925
|
[89]
|
Busuker, I., Neddermann, K.M., Petty, B.A., Schacter, B., Spitalny, G.L., Tepper, M.A. and Pasternak, R.D. (1992) In Vivo Regulation of Hemopoiesis by Transforming Growth Factor p 1. Stimulation of GM-CSF- and M-CSF-Dependent Murine Bone Marrow Precursors. Experimental Hematology, 20, 431-435.
|
[90]
|
Scambia, G., Benedetti, P., Ranelletti, F.O., Ferrandina, G., De Vincenzo, R., Piantelli, M., Masciullo, V., Bonanno, G., Kola, G. and Mancuso, S. (1994) Quercetin Enhances Transforming Growth Factor P1 Secretion by Human Ovarian Cancer Cells. International Journal of Cancer, 57, 211-215. http://dx.doi.org/10.1002/ijc.2910570214
|
[91]
|
Chang, W.W., Hu, F.W., Yu, C.C., et al. (2013) Quercetin in Elimination of Tumor Initiating Stem-Like and Mesenchymal Transformation Property in Head and Neck Cancer. Head & Neck, 35, 413-419. http://dx.doi.org/10.1002/hed.22982
|
[92]
|
Wei, L., Liu, T.T., Wang, H.H., et al. (2011) HSP27 Participates in the Maintenance of Breast Cancer Stem Cells through Regulation of Epithelial-Mesenchymal Transition and Nuclear Factor-κB. Breast Cancer Research, 13, R101. http://dx.doi.org/10.1186/bcr3042
|
[93]
|
Chen, S.F., Nieh, S., Jao, S.W., et al. (2012) Quercetin Suppresses Drug-Resistance Spheres via the p38 MAPK-Hsp27 Apoptotic Pathway in Oral Cancer Cells. PLoS ONE, 7, e49275. http://dx.doi.org/10.1371/journal.pone.0049275
|
[94]
|
Adikrisna, R., Tanaka, S., Muramatsu, S., et al. (2012) Identification of Pancreatic Cancer Stem Cells and Selective Toxicity of Chemotherapeutic Agents. Gastraoenterology, 143, 234-245. http://dx.doi.org/10.1053/j.gastro.2012.03.054
|
[95]
|
Zhou, W., Kallifatidis, G., Bauman, B., et al. (2010) Dietary Polyphenol Quercetin Targets Pancreatic Cancer Stem Cells. International Journal of Oncology, 37, 551-561.
|
[96]
|
Virgili, F., Acconcia, F., Ambra, R., Rinna, A., Totta, P. and Marino, M. (2004) Nutritional Flavonoids Modulate Estrogen Receptor Alpha Signaling. IUBMB Life, 56, 145-151. http://dx.doi.org/10.1080/15216540410001685083
|
[97]
|
Ruiz, P.A. and Haller, D. (2006) Functional Diversity of Flavonoids in the Inhibition of the Proinflammatory NF-κB, IRF, and Akt Signaling Pathways in Murine Intestinal Epithelial Cells. Journal of Nutrition, 136, 664-671.
|
[98]
|
Muthian, G. and Bright, J.J. (2004) Quercetin, a Flavonoid Phytoestrogen, Ameliorates Experimental Allergic Encephalomyelitis by Blocking IL-12 Signaling through JAK-STAT Pathway in T Lymphocyte. Journal of Clinical Immunology, 24, 542-552. http://dx.doi.org/10.1023/B:JOCI.0000040925.55682.a5
|
[99]
|
Wang, Z., Zhang, Y., Banerjee, S., Li, Y. and Sarkar, F.H. (2006) Inhibition of Nuclear Factor KappaB Activity by Genistein Is Mediated via Notch-1 Signaling Pathway in Pancreatic Cancer Cells. International Journal of Cancer, 118, 1930-1936. http://dx.doi.org/10.1002/ijc.21589
|
[100]
|
Amado, N.G., Fonseca, B.F., Cerqueira, D.M., Neto, V.M. and Abreu, J.G. (2011) Flavonoids: Potential Wnt/Beta-Catenin Signaling Modulators in Cancer. Life Sciences, 89, 545-554. http://dx.doi.org/10.1016/j.lfs.2011.05.003
|
[101]
|
Bhat, F.A., Sharmila, G., Balakrishnan, S., Arunkumar, R., Elumalai, P., Suganya, S., Raja Singh, P., Srinivasan, N. and Arunakaran, J. (2014) Quercetin Reverses EGF-Induced Epithelial to Mesenchymal Transition and Invasiveness in Prostate Cancer (PC-3) Cell Line via EGFR/PI3K/Akt Pathway. The Journal of Nutritional Biochemistry, 25, 1132-1139. http://dx.doi.org/10.1016/j.jnutbio.2014.06.008
|
[102]
|
Chen, W., Wang, X., Zhuang, J., Zhang, L. and Lin, Y. (2007) Induction of Death Receptor 5 and Suppression of Survivin Contribute to Sensitization of TRAIL-Induced Cytotoxicity by Quercetin in Non-Small Cell Lung Cancer Cells. Carcinogenesis, 28, 2114-2121. http://dx.doi.org/10.1093/carcin/bgm133
|
[103]
|
Jung, M., Bu, S.Y., Tak, K.H., Park, J.E. and Kim, E. (2013) Anticarcinogenic Effect of Quercetin by Inhibition of Insulin-Like Growth Factor (IGF)-1 Signaling in Mouse Skin Cancer. Nutrition Research and Practice, 7, 439-445. http://dx.doi.org/10.4162/nrp.2013.7.6.439
|
[104]
|
Vidya Priyadarsini, R., Senthil Murugan, R., Maitreyi, S., Ramalingam, K., Karunagaran, D. and Nagini, S. (2010) The Flavonoid Quercetin Induces Cell Cycle Arrest and Mitochondria-Mediated Apoptosis in Human Cervical Cancer (HeLa) Cells through p53 Induction and NF-κB Inhibition. European Journal of Pharmacology, 649, 84-91. http://dx.doi.org/10.1016/j.ejphar.2010.09.020
|
[105]
|
Mu, C., Jia, P., Yan, Z., Liu, X., Li, X. and Liu, H. (2007) Quercetin Induces Cell Cycle G1 Arrest through Elevating Cdk Inhibitors p21 and p27 in Human Hepatoma Cell Line (HepG2). Methods and Findings in Experimental and Clinical Pharmacology, 29, 179-183. http://dx.doi.org/10.1358/mf.2007.29.3.1092095
|
[106]
|
Jung, J.H., Lee, J.O., Kim, J.H., et al. (2010) Quercetin Suppresses HeLa Cell Viability via AMPK-Induced HSP70 and EGFR Down-Regulation. Journal of Cellular Physiology, 223, 408-414. http://dx.doi.org/10.1002/jcp.22049
|
[107]
|
Sibata, C.H., Colussi, V.C., Oleinick, N.L. and Kinsella, T.J. (2000) Photodynamic Therapy: A New Concept in Medical Treatment. Brazilian Journal of Medical and Biological Research, 33, 869-880. http://dx.doi.org/10.1590/S0100-879X2000000800002
|
[108]
|
Agostinis, P., Berg, K., Cengel, K.A., Foster, T.H., Girotti, A.W., Gollnick, S.O., Hahn, S.M., Hamblin, M.R., Juzeniene, A., Kessel, D., Korbelik, M., Moan, J., Mroz, P., Nowis, D., Piette, J., Wilson, B.C. and Golab, J. (2011) Photodynamic Therapy of Cancer: An Update. CA: A Cancer Journal for Clinicians, 61, 250-281. http://dx.doi.org/10.3322/caac.20114
|
[109]
|
Dougherty, T.J. (2002) An Update on Photodynamic Therapy Applications. Journal of Clinical Laser Medicine & Surgery, 20, 3-7. http://dx.doi.org/10.1089/104454702753474931
|
[110]
|
Kübler, A.C. (2005) Photodynamic Therapy. Medical Laser Application, 20, 37-45. http://dx.doi.org/10.1016/j.mla.2005.02.001
|
[111]
|
Ferreira, S.D.R.M., Tedesco, A.C., Sousa, G., Zangaro, R.A., Silva, N.S., Pacheco, M.T.T. and Pacheco-Soares, C. (2004) Analysis of Mitochondria, Endoplasmic Reticulum and Actin Filaments after PDT with AIPcS4. Lasers in Medical Science, 18, 207-212. http://dx.doi.org/10.1007/s10103-003-0282-6
|
[112]
|
Machado, A.H.A., Moraes, K.C.M., Pacheco-Soares, C., Beltrame Jr., M. and da Silva, N.S. (2010) Cellular Changes after Photodynamic Therapy on HEp-2 Cells Using the New ZnPcBr8 Phthalocyanine. Photomedicine and Laser Surgery, 28, S143-S149. http://dx.doi.org/10.1089/pho.2009.2561
|
[113]
|
Rodrigues, R.P., Tini, I.R.P., Soares, C.P. and Silva, N.S. (2014) Effect of Photodynamic Therapy Supplemented with Quercetin in HEp-2 Cells. Cell Biology International, 38, 716-722. http://dx.doi.org/10.1002/cbin.10251
|
[114]
|
Rodewald, H.R., Dessing, M., Dvorak, A.M. and Galli, S.J. (1996) Identification of a Committed Precursor for the Mast Cell Lineage. Science, 271, 818-822. http://dx.doi.org/10.1126/science.271.5250.818
|
[115]
|
Chen, C.C., Grimbaldeston, M.A., Tsai, M., Weissman, I.L. and Galli, S.J. (2005) Identification of Mast Cell Progenitors in Adult Mice. Proceedings of the National Academy of Sciences of the United States of America, 102, 11408-11413. http://dx.doi.org/10.1073/pnas.0504197102
|
[116]
|
Galli, S.J. (1993) New Concepts about the Mast Cell. The New England Journal of Medicine, 328, 257-265. http://dx.doi.org/10.1056/NEJM199301283280408
|
[117]
|
Siraganian, R.P. (2003) Mast Cell Signal Transduction from the High-Affinity IgE Receptor. Current Opinion in Immunology, 15, 639-646. http://dx.doi.org/10.1016/j.coi.2003.09.010
|
[118]
|
Blank, U. and Rivera, J. (2004) The Ins and Outs of IgE-Dependent Mast-Cell Exocytosis. Trends in Immunology, 25, 266-273. http://dx.doi.org/10.1016/j.it.2004.03.005
|
[119]
|
Kraft, S., Rana, S., Jouvin, M.H. and Kinet, J.P. (2004) The Role of the FcεRI Beta-Chain in Allergic Diseases. International Archives of Allergy and Immunology, 135, 62-72. http://dx.doi.org/10.1159/000080231
|
[120]
|
Castells, M. (2006) Mast Cell Mediators in Allergic Inflammation and Mastocytosis. Immunology and Allergy Clinics of North America, 26, 465-485. http://dx.doi.org/10.1016/j.iac.2006.05.005
|
[121]
|
Galli, S.J. and Tsai, M. (2010) Mast Cells in Allergy and Infection: Versatile Effector and Regulatory Cells in Innate and Adaptive Immunity. European Journal of Immunology, 40, 1843-1851. http://dx.doi.org/10.1002/eji.201040559
|
[122]
|
Mekori, Y.A. and Metcalfe, D.D. (2000) Mast Cells in Innate Immunity. Immunological Reviews, 173, 131-140. http://dx.doi.org/10.1034/j.1600-065X.2000.917305.x
|
[123]
|
Wedemeyer, J., Tsai, M. and Galli, S.J. (2000) Roles of Mast Cells and Basophils in Innate and Acquired Immunity. Current Opinion in Immunology, 12, 624-631. http://dx.doi.org/10.1016/S0952-7915(00)00154-0
|
[124]
|
Theoharides, T.C. and Cochrane, D.E. (2004) Critical Role of Mast Cells in Inflammatory Diseases and the Effect of Acute Stress. Journal of Neuroimmunology, 146, 1-12. http://dx.doi.org/10.1016/j.jneuroim.2003.10.041
|
[125]
|
Kim, M., Lim, S.J., Kang, S.W., Um, B.H. and Nho, C.W. (2014) Aceriphyllum Rossii Extract and Its Active Compounds, Quercetin and Kaempferol Inhibit IgE-Mediated Mast Cell Activation and Passive Cutaneous Anaphylaxis. Journal of Agricultural and Food Chemistry, 62, 3750-3758. http://dx.doi.org/10.1021/jf405486c
|
[126]
|
Geoghegan, F., Wong, R.W. and Rabie, A.B. (2010) Inhibitory Effect of Quercetin on Periodontal Pathogens in Vitro. Phytotherapy Research, 24, 817-820.
|
[127]
|
Li, M. and Xu, Z. (2008) Quercetin in a Lotus Leaves Extract May Be Responsible for Antibacterial Activity. Archives of Pharmacal Research, 31, 640-644. http://dx.doi.org/10.1007/s12272-001-1206-5
|
[128]
|
Beil, W., Birkholz, C. and Sewing, K.F. (1995) Effects of Flavonoids on Parietal Cell Acid Secretion, Gastric Mucosal Prostaglandin Production and Helicobacter pylori Growth. Arzneimittelforschung, 45, 697-700.
|
[129]
|
Shin, J.E., Kim, J.M., Bae, E.A., et al. (2005) In Vitro Inhibitory Effect of Flavonoids on Growth, Infection and Vacuolation of Helicobacter pylori. Planta Medica, 71, 197-201. http://dx.doi.org/10.1055/s-2005-837816
|
[130]
|
González-Segovia, R., Quintanar, J.L., Salinas, E., et al. (2008) Effect of the Flavonoid Quercetin on Inflammation and Lipid Peroxidation Induced by Helicobacter pylori in Gastric Mucosa of Guinea Pig. Journal of Gastroenterology, 43, 441-447. http://dx.doi.org/10.1007/s00535-008-2184-7
|
[131]
|
Amin, M.U., Khurram, M., Khattak, B. and Khan, J. (2015) Antibiotic Additive and Synergistic Action of Rutin, Morin and Quercetin against Methicillin Resistant Staphylococcus aureus. BMC Complementary and Alternative Medicine, 15, 59. http://dx.doi.org/10.1186/s12906-015-0580-0
|
[132]
|
Betts, J.W., Sharili, A.S., Phee, L.M. and Wareham, D.W. (2015) In Vitro Activity of Epigallocatechin Gallate and Quercetin Alone and in Combination versus Clinical Isolates of Methicillin-Resistant Staphylococcus aureus. Journal of Natural Products, 78, 2145-2148. http://dx.doi.org/10.1021/acs.jnatprod.5b00471
|
[133]
|
Kaul, T.N., Middleton Jr., E. and Ogra, P.L. (1985) Antiviral Effect of Flavonoids on Human Viruses. Journal of Medical Virology, 15, 71-79. http://dx.doi.org/10.1002/jmv.1890150110
|
[134]
|
Vrijsen, R., Everaert, I. and Boeye, A. (1988) Antiviral Activity of Flavones and Potentiation by Ascorbate. Journal of General Virology, 68, 1749-1751. http://dx.doi.org/10.1099/0022-1317-69-7-1749
|
[135]
|
Bachmetov, L., Gal-Tanamy, M., Shapira, A., Vorobeychik, M., Giterman-Galam, T., Sathiyamoorthy, P., Golan-Goldhirsh, A., Benhar, I., Tur-Kaspa, R. and Zemel, R. (2012) Suppression of Hepatitis C Virus by the Flavonoid Quercetin Is Mediated by Inhibition of NS3 Protease Activity. Journal of Viral Hepatitis, 19, e81-e8. http://dx.doi.org/10.1111/j.1365-2893.2011.01507.x
|
[136]
|
Cevik, O., Cadirci, S., Sener, T.E., Tinay, I., Akbal, C., Tavukcu, H.H., Cetinel, S., Kiran, D. and Sener, G. (2013) Quercetin Treatment against Ischemia/Reperfusion Injury in Rat Corpus Cavernosum Tissue: A Role on Apoptosis and Oxidative Stress. Free Radical Research, 47, 683-691. http://dx.doi.org/10.3109/10715762.2013.814912
|
[137]
|
Lapi, D., Vagnani, S., Pignataro, G., Esposito, E., Paterni, M. and Colantuoni, A. (2012) Protective Effects of Quercetin on Rat Pial Microvascular Changes during Transient Bilateral Common Carotid Artery Occlusion and Reperfusion. Frontiers in Physiology, 3, 32. http://dx.doi.org/10.3389/fphys.2012.00032
|
[138]
|
Lara-Guzman, O.J., Tabares-Guevara, J.H., Leon-Varela, Y.M., álvarez, R.M., Roldan, M., Sierra, J.A., Londono-Londono, J.A. and Ramirez-Pineda, J.R. (2012) Proatherogenic Macrophage Activities Are Targeted by the Flavonoid Quercetin. Journal of Pharmacology and Experimental Therapeutics, 343, 296-306. http://dx.doi.org/10.1124/jpet.112.196147
|
[139]
|
Kawai, Y., Nishikawa, T., Shiba, Y., Saito, S., Murota, K., Shibata, N., Kobayashi, M., Kanayama, M., Uchida, K. and Terao, J. (2008) Macrophage as a Target of Querceting Lucuronides in Human Atherosclerotic Arteries: Implication in the Anti-Atherosclerotic Mechanism of Dietary Flavonoids. The Journal of Biological Chemistry, 283, 9424-9434. http://dx.doi.org/10.1074/jbc.M706571200
|
[140]
|
He, Y., Cao, X., Liu, X., Li, X., Xu, Y., Liu, J. and Shi, J. (2015) Quercetin Reverses Experimental Pulmonary Arterial Hypertension by Modulating the TrkA Pathway. Experimental Cell Research, 339, 122-134. http://dx.doi.org/10.1016/j.yexcr.2015.10.013
|
[141]
|
Adewole, S.O., Caxton-Martins, E.A. and Ojewole, J.A. (2006) Protective Effect of Quercetin on the Morphology of Pancreatic Beta-Cells of Streptozotocintreated Diabetic Rats. African Journal of Traditional, Complementary and Alternative Medicines, 4, 64-74.
|
[142]
|
Anjaneyulu, M., Chopra, K. and Kaur, I. (2003) Antidepressant Activity of Quercetin, a Bioflavonoid, in Streptozotocin-Induced Diabetic Mice. Journal of Medicinal Food, 6, 391-395. http://dx.doi.org/10.1089/109662003772519976
|
[143]
|
Anjaneyulu, M. and Chopra, K. (2004) Quercetin, an Anti-Oxidant Bioflavonoid, Attenuates Diabetic Nephropathy in Rats. Clinical and Experimental Pharmacology and Physiology, 31, 244-248. http://dx.doi.org/10.1111/j.1440-1681.2004.03982.x
|
[144]
|
Bhutada, P., Mundhada, Y., Bansod, K., et al. (2010) Ameliorative Effect of Quercetin on Memory Dysfunction in Streptozotocin-Induced Diabetic Rats. Neurobiology of Learning and Memory, 94, 293-302. http://dx.doi.org/10.1016/j.nlm.2010.06.008
|
[145]
|
Khaki, A., Fathiazad, F., Nouri, M., et al. (2010) Beneficial Effects of Quercetin on Sperm Parameters in Streptozotocin-Induced Diabetic Male Rats. Phytotherapy Research, 24, 1285-1291. http://dx.doi.org/10.1002/ptr.3100
|
[146]
|
Kobori, M., Masumoto, S., Akimoto, Y. and Takahashi, Y. (2009) Dietary Quercetin Alleviates Diabetic Symptoms and Reduces Streptozotocin-Induced Disturbance of Hepatic Gene Expression in Mice. Molecular Nutrition & Food Research, 53, 859-868. http://dx.doi.org/10.1002/mnfr.200800310
|
[147]
|
Youl, E., Bardy, G., Magous, R., et al. (2010) Quercetin Potentiates Insulin Secretion and Protects INS-1 Pancreatic β-Cells against Oxidative Damage via the ERK1/2 Pathway. British Journal of Pharmacology, 161, 799-814. http://dx.doi.org/10.1111/j.1476-5381.2010.00910.x
|
[148]
|
Zhao, L.R., Du, Y.J., Chen, L., Liu, Z.G., Pan, Y.H., Liu, J.F. and Liu, B. (2014) Quercetin Protects against High Glucose-Induced Damage in Bone Marrow-Derived Endothelial Progenitor Cells. International Journal of Molecular Medicine, 34, 1025-1031.
|
[149]
|
Valensia, P., Devehath, C.L., Richards, J.L., et al. (2005) A Multicenter, Double-Blind, Safety Study of QR-333 for the Treatment of Symptomatic Diabetic Peripheral Neuropathy: A Preliminary Report. Journal of Diabetes and Its Complications, 19, 247-253. http://dx.doi.org/10.1016/j.jdiacomp.2005.05.011
|