Moments of Discounted Dividend Payments in the Sparre Andersen Model with a Constant Dividend Barrier
Jiyang Tan, Lin Xiao, Shaoyue Liu, Xiangqun Yang
DOI: 10.4236/am.2011.24056   PDF    HTML     4,327 Downloads   7,836 Views  


We consider the Sparre Andersen risk process in the presence of a constant dividend barrier, and propose a new expected discounted penalty function which is different from that of Gerber and Shiu. We find that iteration mothed can be used to compute the values of expected discounted dividends until ruin and the new penalty function. Applying the new function and the recursion method proposed in Section 5, we obtain the arbitrary moments of discounted dividend payments until ruin.

Share and Cite:

Tan, J. , Xiao, L. , Liu, S. and Yang, X. (2011) Moments of Discounted Dividend Payments in the Sparre Andersen Model with a Constant Dividend Barrier. Applied Mathematics, 2, 444-451. doi: 10.4236/am.2011.24056.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] B. De Finetti, “Su un'Impostazione Alternativa Della Teoria Collettiva del Rischio,” Transactions of the XVth International Congress of Actuaries, Vol. 2, No. 1, 1957, pp. 433-443.
[2] X. S. Lin, G. E. Willmot and S. Drekic, “The Classical Risk Models with a Constant Dividend Barrier: Analysis of the GERBER-Shiu Discounted Penalty Function,” Insurance: Mathematics and Economics, Vol. 33, No. 3, 2003, pp. 551-566.
[3] D. C. M. Dickson and H. R. Waters, “Some Optimal Dividend Problems,” Astin Bulletin, Vol. 34, No. 1, 2004, pp. 49-74. doi:10.2143/AST.34.1.504954
[4] H. U. Gerber, E. S. W. Shiu and N. Smith, “Methods for Estimating the Optimal Dividend Barrier and the Probability of Ruin,” Insurance: Mathematics and Economics, Vol. 42, No. 2, 2008, pp. 243-254. doi:10.1016/j.insmatheco.2007.02.002
[5] E. S. Anderson, “On the Collective Theory of Risk in Case of Contagion between Claims,” Bulletin of the Institute of Mathematics and Its Applications, Vol. 12, No. 2, 1957, pp. 275-279.
[6] S. Li and J. Garrido, “On a Class of Renewal Risk Models with a Constant Dividend Barrier,” Insurance: Mathe- matics and Economics, Vol. 35, No. 3, 2004, pp. 691-701. doi:10.1016/j.insmatheco.2004.08.004
[7] M. M. Claramunt, M. Marmol and R. Lacayo, “On the Probability of Reaching a Barrier in an Erlang(2) Risk Process,” Working Paper No. 24, Universitat Autonoma de Barcelona, Cerdanyola del Vallès, 2004.
[8] H. Albrecher, M. Mercgravee Claramunt and M. Marmol, “On the Distribution of Dividend Payments in a Sparre Andersen Model with Generalized Erlang(n) Interclaim Times,” Insurance: Mathematics and Economics, Vol. 37, No. 2, 2005, pp.324-334. doi:10.1016/j.insmatheco.2005.05.004
[9] Erwin Kreyszig, “Introductory Functional Analysis with Applications,” John Wiley & Sons, Hoboken, 1978, pp. 299-302.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.