[1]
|
Steinkamp, M., Li, T., Fuellgraf, H. and Moser, A. (2007) K(ATP)-dependent neurotransmitter release in the neuronal network of the rat caudate nucleus. Neurochemistry international, 50, 159-163.
doi:10.1016/j.neuint.2006.07.011
|
[2]
|
Baldwin, S.A. (1993) Mammalian passive glucose transporters: members of an ubiquitous family of active and passive transport proteins. Biochimica et Biophysica Acta, 1154, 17-49.
|
[3]
|
Karschin, C., Ecke, C., Ashcroft, F.M. and Karschin, A. (1997) Overlapping distribution of K(ATP) channel- forming Kir6.2 subunit and the sulfonylurea receptor SUR1 in rodent brain. FEBS Letters, 401, 59-64.
doi:10.1016/S0014-5793(96)01438-X
|
[4]
|
During, M.J., Leone, P., Davis, K.E., Kerr, D. and Sherwin, R.S. (1995) Glucose modulates rat substantia nigra GABA release in vivo via ATP-sensitive potassium channels. Journal of Clinical Investigation, 95, 2403-2408.
doi:10.1172/JCI117935
|
[5]
|
Ramrath, L., Levering, J., Conrad, M., Thuemen, A., Fuellgraf, H. and Moser, A. (2009) Mathematical identification of a neuronal network consisting of GABA and DA in striatal slices of the rat brain. Computational and Mathematical Methods in Medicine, 10, 273-285.
doi:10.1080/17486700802616526
|
[6]
|
Conti, L.R., Radeke, C.M., Shyng, S.-L. and Vandenberg, C.A. (2001) Transmembrane topology of the sulfonylurea receptor SUR1. Journal of Biology and Chemistry, 276, 41270-41278. doi:10.1074/jbc.M106555200
|
[7]
|
Ashcroft, F.M. and Gribble, F.M. (200) New windows on the mechanism of action of K(ATP) channel openers. Trends in Pharmacological Sciences, 21, 439-445.
doi:10.1016/S0165-6147(00)01563-7
|
[8]
|
Levin, B.E., Routh, V.H., Kang, L., Sanders, N.M. and Dunn-Meynell, A.A. (2004) Neuronal glucosensing: what do we know after 50 years? Diabetes, 53, 2521-2528.
doi:10.2337/diabetes.53.10.2521
|
[9]
|
Destexhe, A., Mainen, Z. and Sejnowski, T.J. (1998) Methods in Neuronal Modeling, Chapter Kinetic models of synaptic transmission. 2nd Edition, MIT Press, Cambridge. doi:10.1152/jn.00422.2007
|
[10]
|
Canavier, C., Oprisan, S., Callaway, J.C., Ji, H. and Shepard, P. (2007) Computational model predicts a role for ERG current in repolarizing plateau potentials in dopamine neurons: implications for modulation of neuronal activity. Journal of Neurophysiology, 98, 3006-3022.
|
[11]
|
Amini, B., Clark, J.W. and Canavier, C.C. (1999) Calcium dynamics underlying pacemaker- like and burst firing in midbrain dopaminergic neurons: a computational study. Journal of Neurophysiology, 82, 2249-2261.
|
[12]
|
Komendantov, A. and Canavier, C. (2002) Electrical coupling between model midbrain dopamine neurons: effects on firing pattern and synchrony. Journal of Neurophysiology, 87, 1526-1541.
|
[13]
|
Kuznetsov, A.S. (2010) Models of midbrain dopaminergic neurons. Scholarpedia.
http://www.scholarpedia.org/article/Models_of_midbrain_dopaminergic_neurons,
doi:10.4249/scholarpedia.1812, 2(10), 1812.
|
[14]
|
Hodgkin, A.L. and Huxley, A.F. (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology, 117, 500-544.
|
[15]
|
Nomura, M., Fukai, T. and Aoyagi, T. (2003) Synchrony of fast-spiking interneurons interconnected by GABAergic and electrical synapses. Neural Computation, 15, 2179-2198. doi:10.1162/089976603322297340
|
[16]
|
Ainscow, E.K., Mirshamsi, S., Tang, T., Ashford, M.L.J. and Rutter, G.A. (2002) Dynamic imaging of free cytosolic ATP concentration during fuel sensing by rat hypothalamic neurones: evidence for ATP-independent control of ATP-sensitive K(+) channels. The Journal of Physiology, 544, 429-445.
doi:10.1113/jphysiol.2002.022434
|
[17]
|
Nichols, C.G., Lederer, W.J. and Cannell, M.B. (1991) ATP dependence of K(ATP) channel kinetics in isolated membrane patches from rat ventricle. Biophysical Journal, 60, 1164-1177. doi:10.1016/S0006-3495(91)82152-X
|
[18]
|
Rall, W. (1967) Distinguishing theoretical synaptic potentials computed for different soma-dendritic distributions of synaptic input. Journal of Neurophysiology, 30, 1138-1168.
|
[19]
|
Destexhe, A., Mainen, Z. and Sejnowski, T.J. (1994) An efficient method for computing synaptic conductances based on a kinetic model of receptor binding. Neural Computation, 6, 14-18.
doi:10.1016/S0006-3495(91)82152-X
|
[20]
|
Lundstrom, B.N. and Fairhall, A.L. (2006) Decoding stimulus variance from a distributional neural code of inter-spike intervals. The Journal of Neuroscience Online, 26, 9030-9037.
|
[21]
|
Wang, M., Hou, Z. and Xin, H. (2004) Double-system- size resonance for spiking activity of coupled Hodgkin- Huxley neurons. ChemPhysChem, 5, 1602-1605.
doi:10.1002/cphc.200400255
|
[22]
|
Clements, J.D. (1996) Transmitter timecourse in the synaptic cleft: its role in central synaptic function. Trends in Neurosciences, 19, 163-171.
doi:10.1016/S0166-2236(96)10024-2
|
[23]
|
Calabrese, E.J. (2004) Hormesis: a revolution in toxicology, risk assessment and medicine. EMBO Reports, 5, S37-S40. doi:10.1038/sj.embor.7400222
|
[24]
|
Peters, A., Conrad, M., Hubold, C., Schweiger, U., Fischer, B. and Fehm, H.L. (2007) The principle of homeostasis in the hypothalamus-pituitary-adrenal system: new insight from positive feedback. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 293, R83-98.
doi:10.1152/ajpregu.00907.2006
|
[25]
|
Conrad M., Hubold, C., Fischer, B. and Peters A. (2009) Modeling the hypothalamus–pituitary–adrenal system: homeostasis by interacting positive and negative feedback. Journal of Biological Physics, 35, 149-162.
doi:10.1007/s10867-009-9134-3
|
[26]
|
Peters, A., Schweiger, U., Pellerin, L., Hubold, C., Oltmanns, K.M., Conrad, M., Schultes, B., Born, J. and Fehm, H.L. (2004) The selfish brain: competition for energy resources. Neuroscience and Biobehavioral Reviews, 28, 143-180. doi:10.1016/j.neubiorev.2004.03.002
|
[27]
|
Graybiel, A.M. (2005) The basal ganglia: learning new tricks and loving it. Current Opinion in Neurobiology, 15, 638-644. doi:10.1016/j.conb.2005.10.006
|
[28]
|
Packard, M.G. and Knowlton, B.J. (2002) Learning and memory functions of the basal ganglia. Annual Review of Neuroscience, 25, 563-593.
doi:10.1146/annurev.neuro.25.112701.142937
|