Does Soil under Natural Tithonia diversifolia Vegetation Inhibit Seed Germination of Weed Species?


Pot experiment was carried out in the screen house, Ladoke Akintola University Technology Ogbomosho, Nigeria to determine the possible impact of Tithonia diversifolia on the growth of thirteen selected weed species weeds growing in its surroundings. The study consisted of two treatments (Tithonia diversifolia infested and Non-Tithonia diversifolia infested soils) and from the two media, the growth of A. hispidium, B. pilosa E. heterophylla, P. maximum and P. polystachion was significantly affected in soil infested by T. diversifolia. The number of weed seedling emergence afore mentioned was significantly lower than what was obtained in soil not infested with T. diversifolia and this accounted for about 38% of the tested weed species. Germination of four of these weeds species (23%) (A. spinosus, C. viscosa, T. procumbens and D. gayana) was enhanced by the presence of T. diversifolia. The study further revealed that weed counts in T. diversifolia infested soil is significantly lower than the ones in soil without T. diversifolia infestation. Likewise, the vegetative growth of some species (A. spinosus, C. viscosa, T. procumbens and D. gayana) was improved in this soil. This shows that T. diversifolia infested soil contains allelochemicals that performed both stimulatory and inhibitory functions.

Share and Cite:

G. Adesina, "Does Soil under Natural Tithonia diversifolia Vegetation Inhibit Seed Germination of Weed Species?," American Journal of Plant Sciences, Vol. 4 No. 11, 2013, pp. 2165-2173. doi: 10.4236/ajps.2013.411268.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] S. Aref and D. R. Pike, “Midwest Farmers Perceptions of Crop Pest Infestations,” Agronomy Journal, Vol. 90, No. 6, 1988, pp. 819-825.
[2] R. J. Kremer, “Management of Weed Seed Banks with Micro-Organisms,” Ecological Applications, Vol. 3, No. 1, 1993, pp. 42-52.
[3] M. An, J. Pratley and T. Haig, “Allelopathy: From Concept to Reality,” Environmental and Analytical Laboratories and Farrer Centre for Conservation Farming, Charles Sturt University, Wagga Wagga, 1996.
[4] A. O. Ayeni, D. T. Lordbanjou and B. A. Majek, “Tithonia diversifolia (Mexicansunflower) in South Western Nigeria: Occurrence and Growth Habit,” Weed Research, Vol. 37, No. 6, 1997, pp. 443-449.
[5] O. S. Olabode, S. A. Babarinde, G. O. Adesina and O. Akintayo, “Preliminary Investigation on Allelopathic Potential of Tithonia diversifolia and Tetrapluera tetraptera on Millet and Cowpea Seed Germination,” Journal of Agriculture, Environment and Biotechnology, Vol. 2, No. 4, 2009, pp. 393-396.
[6] O. S. Olabode, G. O. Adesina, S. A. Babarinde and E. O. Abioye, “Preliminary Evaluation of Tithonia diversifolia (Hemls) A. Gray for Allelopathic Effect on Some Selected Crops under Laboratory and Screen House Conditions,” The African Journal Plant Science and Biotechnology, Vol. 4, No. S1, 2010, pp. 111-113.
[7] E. L. Rice, “Allelopathy,” 2nd Edition, Academic Press, Orlando, 1984, pp. 67-68.
[8] S. J. H. Rizvi, M. Tahir, V. Rizvi, R. K. Kohli and A. Ansari, “Allelopathic Interactions in Agro Forestry Systems,” Critical Reviews in Plant Sciences, Vol. 18, No. 6, 1999, pp. 773-779.
[9] M. Kruse, M. Strandberg and B. Strandberg, “Ecological Effects of Allelopathic Plants—A Review,” National Environmental Research Institute—NERI Technical Report No. 315, National Environmental Research Institute, Silkeborg, 2000.
[10] F. Macias, R. M. Varela, A. Torres, R. M. Oliva and J. M. G. Molinillo, “Bioactive Noersquiterpenes from Helianthus annuus with Potential Allelopathic Activity,” Phytochemistry, Vol. 48, No. 4, 1998, pp. 631-636.
[11] F. A. Macías, J. M. G. Molinillo, D. Chinchilla and J. C. G. Galindo, “Heliannanes—A Structure-Activity Relationship (SAR) Study,” In: F. A. Macías, et al., Eds., Allelopathy Chemistry and Mode of Action of Allelochemicals, CRC Press, Boca Raton, 1998, pp. 103-124.
[12] S. S. Narwal, M. K. Sarmah and J. C. Tamak, “Allelopathic Strategies for Weed Management in the Rice-Wheat Rotation in Northwestern India,” In: M. Olofsdotter, Ed., Allelopathy in Rice. Proceedings of the Workshop on Allelopathy in Rice, 25-27 Nov. 1996, Manila (Philippines), International Rice Research Institute (IRRI) Press, Manila, 1998.
[13] A. R. Putnam and W. B. Duke, “Biological Suppression of Weeds Evidence for Allelopathy in Accessions of Cucumber,” Science, Vol. 185, No. 4148, 1974, pp. 370-372.
[14] H. Kato-Noguchi, T. Ino, N. Sata and S. Yamamura, “Isolation and Identification of a Potent Allelopathic Substance in Rice Root Exudates,” Physiologia Plantarum, Vol. 115, No. 3, 2002, pp. 401-405.
[15] H. Kato-Noguchi, “Isolation and Identification of an Allelopathic Substance in Pisum sativum,” Phytochemistry, Vol. 62, No. 7, 2003, pp. 1141-1144.
[16] J. A. Caamal-Maldonado, J. J. Jiménez-Osornio, A. Torres-Barragán and A. L. Anaya, “The Use of Allelopathic Legume Cover and Mulch Species for Weed Control in Cropping Systems,” Agronomy Journal, Vol. 93, No. 1, 2001, pp. 27-36.
[17] A. L. Anaya, M. R. Calera, R. Mata and R. Pereda-Miranda, “Allelopathic Potential of Compounds Isolated from Ipomoea tricolor Cav. (Convolvulaceae),” Journal of Chemical Ecology, Vol. 16, No. 7, 1990, pp. 2145-2152.
[18] R. Pereda-Miranda, R. Mata, A. L. Anaya, J. M. Pezzuto, D. B. M. Wickramaratne and A. D. Kinghorn, “Tricolorin A, Major Phytogrowth Inhibitor from Ipomoea Tricolor,” Journal of Natural Products, Vol. 56, No. 4, 1993, pp. 571-582.
[19] J. Petersen, R. Belz, F. Walker and K. Hurle, “Weed Suppression by Release of Isothiocyanates from Turnip-Rape Mulch,” Agronomy Journal, Vol. 93, No. 1, 2001, pp. 37-43.
[20] M. A. Turk and A. M. Tawaha, “Allelopathic Effect of Black Mustard (Brassica nigra L.) on Germination and Growth of Wild Oat (Avena fatua L.),” Crop Protection, Vol. 22, No. 4, 2003, pp. 673-677.
[21] S. D. Kanchan and Jayachandra, “Allelopathic Effects of Parthenium hysterophorus L. IV. Identification of Inhibitors,” Plant and Soil, Vol. 55, No. 1, 1980, pp. 67-75.
[22] R. K. Kohli, D. Rani and R. C. Verma, “A Mathematical Model to Predict Tissue Response to Parthenin—An Allelochemical,” Biologia Plantarum, Vol. 35, No. 4, 1993, pp. 567-576.
[23] J. R. De la Fuente, M. L. Uriburu, G. Burton and V. E. Sosa, “Sesquiterpene Lactone Variability in Parthenium hysterophorus L.,” Phytochemistry, Vol. 55, No. 7, 2000, pp. 769-772.
[24] S. N. Khosla and S. N. Sobti, “Parthenin-A National Health Hazard, Its Control and Utility—A Review,” Pesticides, Vol. 13, 1979, pp. 21-27.
[25] S. N. Khosla and S. N. Sobti, “Effective Control of Parthenium hysterophorus L.,” Pesticides, Vol. 15, 1981, pp. 18-19.
[26] S. D. Kanchan, “Growth inhibitors from Parthenium hysterophorus Linn,” Current Science, Vol. 44, 1975, pp. 358-359.
[27] S. D. Kanchan and Jayachandra, “Allelopathic Effects of Partheniu hysterophorus L. II. Leaching of Inhibitors from Aerial Vegetative Parts,” Plant and Soil, Vol. 55, No. 1, 1980, pp. 61-66.
[28] S. Sisodia and M. B. Siddiqui, “Allelopathic Effect by Aqueous Extracts of Different Parts of Croton bonplandianum Baill. On Some Crop and Weed Plants,” Journal of Agricultural Extension and Rural Development, Vol. 2, No. 1, 2010, pp. 22-28.
[29] D. M. Maddox, A. Mayfield and N. H. Poritz, “Distribution of Yellow Star Thistle (Centaurea solstitialis) and Russian Knapweed (Centaurea repens),” Weed Science, Vol. 33, No. 3, 1985, pp. 315-327.
[30] R. J. Stevens, “Evaluation of the Sulphur Status of Some Grasses for Silage in Northern Ireland,” Journal of Agricultural Science, Vol. 105, No. 3, 1985, pp. 581-585.
[31] K. G. Beck and D. E. Hanson, “Rangeland Grass Seed Germination and Mycorrhizal Fungi Affected by Russian Knapweed Aqueous Extracts,” In: Proceedings of the Knapweed Symposium, Montana State University, Bozeman, 1989, p. 204.
[32] C. H. Koger, D. H. Poston, R. M. Hayes and R. F. Montgomery, “Glyphosate-Resistant Horseweed (Conyza canadensis) in Mississippi,” Weed Technology, Vol. 18, No. 3, 2004, pp. 820-825.
[33] U. R. Sangakkara, W. Richner, M. K. Schneider and P. Stamp, “Impact of Intercropping Beans (Phaseolus vulgaris) and Sun Hemp (Cotalaria juncea) on Growth, Yields and Nitrogen Uptake of Maize (Zea mays) Grown in the Humid Tropics during the Minor Rainy Season,” Maydica, Vol. 48, 2003, pp. 233-239.
[34] E. J. Solteiro Pires, J. A. Tenreiro Machado and P. B. de Moura Oliveira, “An Evolutionary Approach to Robot Structure and Trajectory Optimization,” ICAR’01-10th International Conference on Advanced Robotics, Budapest, 22-25 August 2001, pp. 333-338.
[35] J. M. O. Eze and L. S. Gill, “Chromolaena odorata—A Problematic Weed,” Compositae Newsletter, Vol. 20, 1992, pp. 14-18.
[36] O. O. Otusanya, O. J. Ilori and A. A. Adelusi, “Allelopathic Effect of Tithonia diversifolia (Hemsl.) A. Gray on Germination and Growth of Amaranthus cruentus,” Research Journal of Environmental Sciences, Vol. 1, No. 6, 2007, pp. 285-293.
[37] B. P. Bhatt, D. S. Chauhan and P. Todaria, “Effect of Weed Leachate on Germination and Radicle Extension of Some Food Crops,” Indian Journal of Plant Physiology, Vol. 36, 1994, pp. 170-177.
[38] T. M. McCalla and F. A. Haskins, “Phytotoxic Substances from Oil Microorganism and Crop Residues,” Bacteriology Reviews, Vol. 28, No. 4, 1964, pp. 181-207.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.