Flow Dynamics in Restricted Geometries: A Mathematical Concept Based on Bloch NMR Flow Equation and Boubaker Polynomial Expansion Scheme

Abstract

Computational techniques are invaluable to the continued success and development of Magnetic Resonance Imaging (MRI) and to its widespread applications. New processing methods are essential for addressing issues at each stage of MRI techniques. In this study, we present new sets of non-exponential generating functions representing the NMR transverse magnetizations and signals which are mathematically designed based on the theory and dynamics of the Bloch NMR flow equations. These signals are functions of many spinning nuclei of materials and can be used to obtain information observed in all flow systems. The Bloch NMR flow equations are solved using the Boubaker polynomial expansion scheme (BPES) and analytically connect most of the experimentally valuable NMR parameters in a simplified way for general analyses of magnetic resonance imaging with adiabatic condition.

Share and Cite:

Awojoyogbe, O. , Dada, O. , Boubaker, K. and Adesola, O. (2013) Flow Dynamics in Restricted Geometries: A Mathematical Concept Based on Bloch NMR Flow Equation and Boubaker Polynomial Expansion Scheme. Journal of Applied Mathematics and Physics, 1, 71-78. doi: 10.4236/jamp.2013.15011.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] S. Ogawa, T. M. Lee, A. S. Nayak and P. Glynn, “Oxygenation-Sensitive Contrast in Magnetic Resonance Image of Rodent Brain at High Magnetic Fields,” Magnetic Resonance in Medicine, Vol. 14, No. 1, 1990, pp. 68-78.
http://dx.doi.org/10.1002/mrm.1910140108
[2] J. J. Dejerine, “Anatomie des Centres Nerveux,” Rueff, Paris, 1895.
[3] W. J. S. Krieg, “Connections of the Cerebral Cortex,” Brain Books, Evanston, 1963.
[4] W. J. S. Krieg, “Architectonics of Human Cerebral Fiber Systems,” Brain Books, Evanston, 1973.
[5] K. Pribam and P. MacLean, “Neuronographic Analysis of Medial and Basal Cerebral Cortex,” Journal of Neurophysiology, Vol. 16, No. 3, 1953, pp. 324-340.
[6] D. G. Whitlock and W. J. H. Nauta, “Subcortical Projections from Temporal Neocortex in Macaca Mulatto,” Journal of Comparative Neurology, Vol. 106, No. 1, 1956, pp. 183-212. http://dx.doi.org/10.1002/cne.901060107
[7] B. H. Turner, M. Mishkin and M. Knapp, “Organization of the Amygdalopetal Projections from Modality-Specific Cortical Association Areas in the Monkey,” Journal of Comparative Neurology, Vol. 191, No. 4, 1980, pp. 515-543. http://dx.doi.org/10.1002/cne.901910402
[8] A. Yagishita, I. Nakano, M. Oda and A. Hirano, “Location of the Corticospinal Tract in the Internal Capsule at MR Imaging,” Radiology, Vol. 191, No. 2, 1994, pp. 455-460.
[9] P. Godement, J. Vanselow, S. Thanos and F. Bonhoeffer, “A Study in Developing Visual Systems with a New Method of Staining Neurones and Their Processes in Fixed Tissue,” Development, Vol. 101, No. 4, 1987, pp. 697-713.
[10] S. Mori, B. J. Crain, V. P. Chacko and P. C. van Zijl, “Three-Dimensional Tracking of Axonal Projections in the Brain by Magnetic Resonance Imaging,” Annals of Neurology, Vol. 45, No. 2, 1999, pp. 265-269.
http://dx.doi.org/10.1002/1531-8249(199902)45:2<265::AID-ANA21>3.0.CO;2-3
[11] T. E. Conturo, N. F. Lori, T. S. Cull, E. Akbudak, A. Z. Snyder, J. S. Shimony, et al., “Tracking Neuronal Fiber Pathways in the Living Human Brain,” Proceedings of the National Academy Sciences of the USA, Vol. 96, No. 18, 1999, pp. 10422-10427.
http://dx.doi.org/10.1073/pnas.96.18.10422
[12] P. J. Basser, S. Pajevic, C. Pierpaoli, J. Duda and A. Aldroubi, “In Vivo Fiber Tractography Using DT-MRI Data,” Magnetic Resonance in Medicine, Vol. 44, No. 4, 2000, pp. 625-632.
http://dx.doi.org/10.1002/1522-2594(200010)44:4<625::AID-MRM17>3.0.CO;2-O
[13] C. R. Tench, P. S. Morgan, M. Wilson and L. D. Blumhardt, “White Matter Mapping Using Diffusion Tensor MRI,” Magnetic Resonance in Medicine, Vol. 47, No. 5, 2002, pp. 967-972. http://dx.doi.org/10.1002/mrm.10144
[14] C. R. Tench, P. S. Morgan, L. D. Blumhardt and C. Constantinescu, “Improved White Matter Fiber Tracking Using Stochastic Labeling,” Magnetic Resonance in Medicine, Vol. 48, No. 4, 2002, pp. 677-683.
http://dx.doi.org/10.1002/mrm.10266
[15] M. A. Koch, D. G. Norris and M. Hund-Georgiadis, “An Investigation of Functional and Anatomical Connectivity Using Magnetic Resonance Imaging,” Neuroimage, Vol. 16, No. 1, 2002, pp. 241-250.
http://dx.doi.org/10.1006/nimg.2001.1052
[16] P. Hagmann, J. P. Thiran, L. Jonasson, P. Vandergheynst, S. Clarke, P. Maeder, et al., “DTI Mapping of Human Brain Connectivity: Statistical Fibre Tracking and Virtual Dissection,” Neuroimage, Vol. 19, No. 3, 2003, pp. 545-554. http://dx.doi.org/10.1016/S1053-8119(03)00142-3
[17] A. E. Baird and S. Warach, “Magnetic Resonance Imaging of Acute Stroke,” Journal of Cerebral Blood Flow & Metabolism, Vol. 18, 1998, pp. 583-609.
http://dx.doi.org/10.1097/00004647-199806000-00001
[18] F. Calamante, D. L. Thomas, G. S. Pell, J. Wiersma and R. Turner, “Measuring Cerebral Blood Flow Using Magnetic Resonance Imaging Techniques,” Journal of Cerebral Blood Flow & Metabolism, Vol. 19, 1999, pp. 701-735. http://dx.doi.org/10.1097/00004647-199907000-00001
[19] M. A. Aweda, M. Agida, M. Dada, O. B. Awojoyogbe, K. Isah, O. P. Faromika, K. Boubaker, K. De and O. S. Ojambati, “A Solution to Laser-Induced Heat Equation inside a Two-Layer Tissue Model Using Boubaker Polynomials Expansion Scheme,” Journal of Laser Micro/Nanoengineering, Vol. 6, No. 2, 2011, pp. 105-109.
[20] M. A. Aweda, M. Agida, M. Dada, O. B. Awojoyogbe, K. Isah, O. P. Faromika, K. Boubaker, K. De and O. S. Ojambati, “Boubaker Polynomials Expansion Scheme Solution to the Heat Transfer Equation inside Laser Heated Biological Tissues,” Journal of Heat Transfer, Vol. 134, No. 6, 2012, Article ID: 064503.
http://dx.doi.org/10.1115/1.4005744
[21] A. Belhadj, O. Onyango and N. Rozibaeva, “Boubaker Polynomials Expansion Scheme-Related Heat Transfer Investigation inside Keyhole Model,” Journal of Thermophysics and Heat Transfer, Vol. 23, No. 3, 2009, pp. 639-642. http://dx.doi.org/10.2514/1.41850
[22] A. S. Kumar, “An Analytical Solution to Applied Mathematics-Related Love’s Equation Using the Boubaker Polynomials Expansion Scheme,” Journal of the Franklin Institute, Vol. 347, No. 9, 2010, pp. 1755-1761.
http://dx.doi.org/10.1016/j.jfranklin.2010.08.008
[23] A. Belhadj, J. Bessrour, M. Bouhafs and L. Barrallier, “Experimental and Theoretical Cooling Velocity Profile inside Laser Welded Metals Using Keyhole Approximation and Boubaker Polynomials Expansion,” Journal of Thermal Analysis and Calorimetry, Vol. 97, No. 3, 2009, pp. 911-920.
http://dx.doi.org/10.1007/s10973-009-0094-4
[24] P. Barry and A. Hennessy, “Meixner-Type Results for Riordan Arrays and Associated Integer Sequences, Section 6: The Boubaker Polynomials,” Journal of Integer Sequences, Vol. 13, 2010, pp. 1-34.
[25] M. Agida and A. S. Kumar, “A Boubaker Polynomials Expansion Scheme Solution to Random Love Equation in the Case of a Rational Kernel, El,” Journal of Theoretical Physics, Vol. 7, 2010, pp. 319-326.
[26] A. Yildirim, S. T. Mohyud-Din and D. H. Zhang, “Analytical Solutions to the Pulsed Klein-Gordon Equation Using Modified Variational Iteration Method (MVIM) and Boubaker Polynomials Expansion Scheme (BPES),” Computers and Mathematics with Applications, Vol. 59, No. 8, 2010, pp. 2473-2477.
http://dx.doi.org/10.1016/j.camwa.2009.12.026
[27] J. Ghanouchi, H. Labiadh and K. Boubaker, “An Attempt to Solve the Heat Transfer Equation in a Model of Pyrolysis Spray Using 4q-Order m-Boubaker Polynomials,” International Journal of Heat and Technology, Vol. 26, 2008, pp. 49-53.
[28] O. B. Awojoyogbe and K. Boubaker, “A Solution to Bloch NMR Flow Equations for the Analysis of Hemodynamic Functions of Blood Flow System Using mBoubaker Polynomials,” Current Applied Physics, Vol. 9, No. 1, 2009, pp. 278-288.
http://dx.doi.org/10.1016/j.cap.2008.01.019
[29] S. Slama, J. Bessrour, M. Bouhafs and K. B. Ben Mahmoud, “Numerical Distribution of Temperature as a Guide to Investigation of Melting Point Maximal Front Spatial Evolution During Resistance Spot Welding Using Boubaker Polynomials,” Numerical Heat Transfer, Part A, Vol. 55, No. 4, 2009, pp. 401-404.
http://dx.doi.org/10.1080/10407780902720783
[30] S. Slama, M. Bouhafs and K. B. Ben Mahmoud, “A Boubaker Polynomials Solution to Heat Equation for Monitoring A3 Point Evolution during Resistance Spot Welding,” International Journal of Heat and Technology, Vol. 26, No. 2, 2008, pp. 141-146.
[31] S. Tabatabaei, T. Zhao, O. Awojoyogbe and F. Moses, “Cut-off Cooling Velocity Profiling inside a Keyhole Model Using the Boubaker Polynomials Expansion Scheme,” International Journal of Heat and Mass Transfer, Vol. 45, No. 10, 2009, pp. 1247-1255.
http://dx.doi.org/10.1007/s00231-009-0493-x
[32] S. Fridjine and M. Amlouk, “A New Parameter: An ABACUS for Optimizing Functional Materials Using the Boubaker Polynomials Expansion Scheme,” Modern Physics Letters B, Vol. 23, No. 17, 2009, pp. 2179-2182.
http://dx.doi.org/10.1142/S0217984909020321
[33] A. Milgram, “The Stability of the Boubaker Polynomials Expansion Scheme (BPES)-Based Solution to Lotka-Volterra Problem,” Journal of Theoretical Biology, Vol. 271, No. 1, 2011, pp. 157-158.
http://dx.doi.org/10.1016/j.jtbi.2010.12.002
[34] O. B. Awojoyogbe, “Analytical Solution of the Time Dependent Bloch NMR Equations: A Translational Mechanical Approach,” Physica A, Vol. 339, No. 3-4, 2004, pp. 437-460. http://dx.doi.org/10.1016/j.physa.2004.03.061
[35] O. B. Awojoyogbe, O. M. Dada, O. P. Faromika and O. E. Dada, “Mathematical Concept of the Bloch Flow Equations for General Magnetic Resonance Imaging: A Review,” Concepts in Magnetic Resonance Part A, Vol. 38A, No. 3, 2011, pp. 85-101.
http://dx.doi.org/10.1002/cmr.a.20210

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.