Effect of Monovacancy Defects on Adsorbing of CO, CO2, NO and NO2 on Carbon Nanotubes: First Principle Calculations

Abstract

We have applied density functional theory to investigate different types of carbon nanotubes (armchair (4,4)CNT and zig-zag (7,0)CNT) as sensors of some pollutant gas molecules, especially CO, CO2, NO and NO2. We show, for the first time, that the adsorption of pollutant gas molecules on carbon nanotubes are improved by introducing the monovacancy defects on the surfaces of (7,0)CNT. The adsorption energies, the optimal adsorption positions and the orientation of these gas molecules on the surfaces of carbon nanotubes are studied. It is found that the most adsorbed pollutant gas is NO molecule on (7,0)CNT.

Share and Cite:

EL-Barbary, A. , Ismail, G. and Babeer, A. (2013) Effect of Monovacancy Defects on Adsorbing of CO, CO2, NO and NO2 on Carbon Nanotubes: First Principle Calculations. Journal of Surface Engineered Materials and Advanced Technology, 3, 287-294. doi: 10.4236/jsemat.2013.34039.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] S. Iijima, “Helical Microtubules of Graphitic Carbon,” Nature, Vol. 354, No. 7, 1991, p. 56.
http://dx.doi.org/10.1038/354056a0
[2] F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson and K. S. Novoselov, “Detection of Individual Gas Molecules Adsorbed on Graphene,” Nature Mater, Vol. 6, No. 9, 2007, p. 652.
http://dx.doi.org/10.1038/nmat1967
[3] S. Peng, K. Cho, P. Qi and H. Dai, “Ab Initio Study of CNT NO2 Gas Sensor,” Chemical Physics Letters, Vol. 387, No. 4-6, 2004, p. 271.
http://dx.doi.org/10.1016/j.cplett.2004.02.026
[4] J. Kong, N. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho and H. Dai, “Nanotube Molecular Wires as Chemical Sensors,” Science, Vol. 287, No. 5453, 2000, p. 622.
http://dx.doi.org/10.1126/science.287.5453.622
[5] S. Peng and K. Cho, “Chemical Control of Nanotube Electronics,” Nanotechnology, Vol. 11, No. 4, 2000, p. 57.
http://dx.doi.org/10.1088/0957-4484/11/2/303
[6] J. E. Fischer, “Carbon Nanotubes: A Nanostructured Material for Energy Storage,” Chemical Innovation, Vol. 30, No. 9, 2000, p. 21.
[7] V. Meunier, J. Kephart, C. Roland and J. Bernholc, “Ab Initio Investigations of Lithium Diffusion in Carbon Nanotube Systems,” Physical Review Letters, Vol. 88, No. 7, 2002, p. 075506.
http://dx.doi.org/10.1103/PhysRevLett.88.075506
[8] M. Keshavarz and M. Beheshti, “Investigation of Chemical Adsorption of CO, CO2, H2 and NO Molecules on Inside and Outside of Single-Wall Nanotube Using HF and DFT Calculations,” Journal of Physical and Theoretical Chemistry, IAU Iran, Vol. 7, No. 2, 2010, p. 111.
[9] K. Azizi, S. M. Hashemianzadeh and Sh. Bahramifar, “The Effect of Source Temperature on Morphological and Optical Properties of ZnO Nanowires Grown Using a Modified Thermal Evaporation Set-Up,” Current Applied Physics, Vol. 11, No. 3, 2011, pp. 776-782.
http://dx.doi.org/10.1016/j.cap.2010.11.071
[10] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Lamham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. G. Johnson, W. Chen, M. W. Wong, J. L. Andres, M. Head-Gordon, E. S. Replogle and J. A. Pople, Gaussian, Inc., Wallingford CT, 2004.
[11] A. A. EL-Barbary, H. I. Lebda and M. A. Kamel, “The High Conductivity of Defect Fullerene C40 Cage,” Computational Materials Science, Vol. 46, 2009, p. 128.
http://dx.doi.org/10.1016/j.commatsci.2009.02.034
[12] A. A. El-Barbary, Kh. M. Eid, M. A. Kamel and M. M. Hassan, “Band Gap Engineering in Short Heteronanotube Segments via Monovacancy Defects,” Computational Materials Science, Vol. 69, 2013, p. 87.
http://dx.doi.org/10.1016/j.commatsci.2012.10.035
[13] H. Chang, J. D. Lee, S. M. Lee and Y. H. Lee, “Adsorption of NH3 and NO2 Molecules on Carbon Nanotubes,” Applied Physics Letters, Vol. 79, No. 23, 2001, p. 3863.
http://dx.doi.org/10.1063/1.1424069
[14] H. Nalwa, “Nanostructured Materials and Nanotechnology,” Academic Press, San Diego, 2002.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.