[1]

B. Saha, “Anisotropic Cosmological Models with a Perfect Fluid and a Term,” Astrophysics and Space Science , Vol. 302, No. 14, 2006a, pp. 8391.

[2]

B. Saha, “Anisotropic Cosmological Models with a Perfect Fluid and Dark Energy Reexamined,” International Journal of Theoretical Physics, Vol. 45, No. 5, 2006b, pp. 952964.

[3]

B. Saha, “Bianchi Type I Universe With Viscous Fluid,”
Modern Physics Letters A, Vol. 20, No. 28, 2005, p. 2127. doi：10.1142/S021773230501830X

[4]

B. Saha, “Anisotropic Cosmological Models with Perfect Fluid and Dark Energy,”Chinese, 2005.

[5]

R. G. Vishwakarma, “A Model to Explain Varying, G and σ^{2} Simultaneously,” General Relativity and Gravitation, Vol. 37, No. 7, 2005, pp. 13051311.
doi：10.1007/s1071400501130

[6]

S. Carneiro and J. A. S. Lima, “Time Dependent Cosmological Term and Holography,” Modern International Journal of Physics A, Vol. 20, No. 11, 2005, p. 2465.
doi:10.1142/S0217751X0502478X

[7]

J. V. Cunha, R. C. Santos, “The Existence Of An Old Quasar At Z = 3.91 And Its Implications For Λ(T) Deflationary Cosmologies Read,” Modern International Journal of Physics D, Vol. 13, No. 7, 2004, p. 1321.
doi.org/10.1142/S0218271804005481

[8]

A. G. Riess, et al., Astronomical Journal, pp. 607 665.

[9]

S. W. Allen, et al., “Probing Dark Energy with ConstellationX,” Monthly Notices of the Royal Astronomical Society, Vol. 353, No. 2, 2004, pp. 457467.
doi:10.1111/j.13652966.2004.08080.x

[10]

J. A. S. Lima “Alternative Dark Energy Models: An Overview,” Brazilian Journal of Physics, Vol. 34, No. 1a, 2004, pp. 194200.
doi：10.1590/S010397332004000200009

[11]

T. Padmanabhan, “Cosmological Constant the Weight of the Vacuum,” Physics Report, Vol. 380, No. 56, 2003, pp. 235320. doi:10.1016/S03701573(03)001200

[12]

P. J. E. Peebles and B. Ratra, “The Cosmological Constant and Dark Energy,” Reviews of Modern Physics, Vol. 75, No. 2, 2003, pp. 559606.
doi：10.1103/RevModPhys.75.559

[13]

R. G. Vishwakarma, “Study of the MagnitudeRedshift Relation for Type Ia Supernovae in a Model Resulting from a RicciSymmetry,” General Relativivity and Gravity, Vol. 33, 2001, p. 1973.

[14]

R. A. Vishwakarma, “A Study of Angular Sizeredshift Relation for Models in Which ∧ Decays as the Energy Density,” Class Quantum Gravity, Vol. 17, 2000, pp. 3833. doi：10.1088/02649381/17/18/317

[15]

S. Perlmutter, et al., “Measurements of Ω and Λ from 42 HighRedshift Supernovae,” Astrophysical Journal, 1999, pp. 517 565.

[16]

I. Arbab, “Bianchi Type I Universe with Variable G and Λ,” General Relativity and Gravitation, Vol. 30, No. 9,1998, pp. 14011405. doi:0.1023/A:1018856625508

[17]

S. Perlmutter, et al., “Discovery of a Supernova Explosion at Half the Age of the Universe,” Nature, Vol. 391, 1998.

[18]

A. G. Riess, et al., “Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant,” the Astronphysical Journal, Vol. 116 , 1998, p. 1009.

[19]

S. Perlmutter, et al., “Measurements of the Cosmological Parameters Ω and Λ from the First Seven Supernovae at z ≥ 0.35,” the Astrophysical Journal, Vol. 483, No. 2,1997, p. 565.doi：10.1086/304265.

[20]

V. Silveira and J. Waga, “Cosmological Properties of a Class of ∧ Decaying Cosmologies,” Physical Review D, Vol. 56, 1997, p. 4625.

[21]

J. A. S. Lima and M. Trodden, “Decaying Vacuum Energy and Deflationary Cosmology in Open and Closed Universes,” Physical Review D, Vol. 53, No. 8, 1996, pp. 42804286. DOI: 10.1103/PHYSREVD.53.4280）

[22]

J. A. S. Lima, “Thermodynamics of Decaying Vacuum Cosmologies,” Physical Review D, Vol. 54, p. 2571.

[23]

L. F. B. Torres and I. Waga, “Decaying Lambda Cosmologies and Statistical Properties of Gravitational Lenses,” Monthly Noices of the Royal Astronomical Society, Vol. 279, 1996, pp. 712726.
doi: 10.1093/mnras/279.3.712

[24]

D. Kalligas, P. S. Wesson and C. W. F. Everitt, “Bianchi Type I Cosmological Models with VariableG and Λ: A Comment, General Relativity and Gravitivity, Vol. 27, 1995, pp. 645650. doi：10.1007/BF02108066

[25]

A. I. Arbab and A. M. M. AbdelRahaman, “Nonsingular Cosmology with a Timedependent Cosmological Term,” Physical Review D, Vol. 50, 1994, pp. 77257728.
doi：10.1103/PhysRevD.50.7725

[26]

A. Beesham, General Relativity and Gravitivity, Vol. 26 1599.

[27]

J. A. S. Lima and J. M. F. Maia, Physical Review D, Vol. 49, 1994, p. 5579.

[28]

J. A. S.Lima and J. C. Carvalho, “Dirac's Cosmology with Varying Cosmological Constant,” General Relativity and Gravitivity, Vol. 26, 1994, pp. 909916. doi10.1007/BF02107147

[29]

M. D. Maia and G. S. Silva, “Geometrical Constraints on the Cosmological Constant,” Physical Review D, Vol. 50 , 1994, pp. 72337238. doi：10.1103/PhysRevD.50.7233

[30]

V. Silveira and J. Waga, “Decaying Λ Cosmologies and Power Spectrum,” Physical Review D, Vol. 50, 1994, pp. 48904894. doi：10.1103/PhysRevD.50.4890

[31]

J. C. Carvalho, J. A. S. Lima and I. Waga, “Cosmological Consequences of a Timedependent Term,” Physical Review D, Vol. 46, No. 6, 1992, pp. 24042407.
doi：10.1103/PhysRevD.46.2404

[32]

M. S. Berman, “Cosmological Models with Variable Gravitational and Cosmological Constants,” General Relativity and Gravitation, Vol. 23, 1991a, pp. 465469.
doi：10.1007/BF00756609

[33]

M. S. Berman, “Cosmological Models with VariableCosmological Term,” Physical Review D, Vol. 43, 1991b, pp. 10751078.

[34]

D. Pavon, “Nonequilibrium Fluctions in Cosmic Vacuum Decay,” Physical Review D, Vol. 43, 1991, pp. 375378.
doi：10.1103/PhysRevD.43.375

[35]

A. M. M. AbdelRahaman, “A Critical Density Cosmological Model with Varying Gravitation and Cosmological Constants,” General Relativity and Gravitation, Vol. 22, No. 6, 1990, pp. 655663. doi：10.1007/BF00755985

[36]

M. Berman, “Static Universe in a Modified Brans dicke Cosmology,” International Journal of Theoretical Physics, Vol. 29, 1990, pp. 567570.
doi：10.1007/BF00672031

[37]

M. S. Berman and M. M. Som, “BransDicke Models with Timedependent Cosmological Term,” International Journal of Theory Physics, Vol. 29, 1990, pp. 14111414.
doi：10.1007/BF00674120

[38]

W. Chen and Y. S. Wu, “Implication of a Cosmological Constant Varying as R^{2} ,” Physical Review D, Vol. 41, 1990, p. 695.

[39]

E. A. Milne, “Relativity, Gravitation and World structure,” Oxford University Press, Oxford, 1935.

[40]

M. S. Berman, M. M. Som and F. M. Gomide, “BransDicke Static Universes,” General Relativity and Gravitation, Vol. 21, 1989, pp. 287292.
doi：10.1007/BF00764101

[41]

S. Weinberg, “The Cosmological Constant Problem,” Review Modern Physics, Vol. 61, 1989, pp. 123.
doi：10.1103/RevModPhys.61.1

[42]

T. S. Olson and T. F. Jordan, “Ages of the Universe for Decreasing Cosmological Constants,” Physical Review D, Vol. 35, 1987, pp. 32583260.
doi:10.1103/PhysRevD.35.3258

[43]

O. Bertolami BransDicke, “Cosmology with a Scalar Field Dependent Cosmological Term,” Fortsch Physics, Vol. 34, 1986b, p. 829.

[44]

O. Bertolami, “Timedependence Cosmological Term,” Nuovo Cimento B, Vol. 93, 1986a, pp. 3642.
doi:10.1007/BF02728301

[45]

T. L. Chow, “The Variability of the Gravitational Constant,” Nuovo Cimento Lettere, Vol. 31, 1981, pp. 119120. doi:10.1007/BF02822409

[46]

L. S. Levitt, “The Gravitational Constraint at Time Zero,” Nuovo Cimento,Lettere, Serie 2, Vol. 29 , 1980, p. 23.
