Genetic Engineering Peanut for Higher Drought- and Salt-Tolerance


Peanut (Arachis hypogaea L.) is one of the major oilseed crops, mainly grown in tropical and sub-tropical regions of the world. It is also rich in proteins, vitamins and ions, therefore it constitutes an important portion of food nutrition for people in these regions. The production of peanut is being threatened by the changing environments as the major peanut producing counties such as China, India, and USA are facing severe water shortage for peanut irrigation. The yield and quality of peanut are negatively affected by drought and salinity. Making peanut more droughtand salt-tolerant will likely sustain peanut production in countries where water shortage or saline soil are already problems. Efforts were made to genetically engineer peanut for higher tolerance to drought and salt. Analysis of these transgenic peanut plants indicated that the agronomic traits such as peanut yields were the same between wild-type and transgenic peanut plants under normal growth conditions, yet the yields of transgenic peanut plants were much higher than wild-type peanut plant under reduced irrigation conditions. Other traits such as protein content and fatty acid compositions in the seeds of transgenic peanut plants were not altered under both normal and drought conditions, indicating that the genetic manipulation of peanut for stress tolerance did not affect chemical compositions of peanut seeds in transgenic peanut plants, only increased seed yields under stress conditions.

Share and Cite:

L. Sun, R. Hu, G. Shen and H. Zhang, "Genetic Engineering Peanut for Higher Drought- and Salt-Tolerance," Food and Nutrition Sciences, Vol. 4 No. 6A, 2013, pp. 1-7. doi: 10.4236/fns.2013.46A001.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] J. R. Stansell and J. E. Pallas, “Yield and Quality Response of Florunner Peanut to Applied Drought at Several Growth Stages,” Peanut Science, Vol. 12, No. 2, 1985, pp. 64-70. doi:10.3146/pnut.12.2.0005
[2] M. C. Lamb, J. I. Davidson, J. W. Childre and N. R. Martin, “Comparison of Peanut Yield, Quality, and Net Returns between Nonirrigated and Irrigated Production,” Peanut Science, Vol. 24, No. 2, 1997, pp. 97-101. doi:10.3146/i0095-3679-24-2-7
[3] K. K. Sharma and M. Lavanya, “Recent Developments in Transgenics for Abiotic Stress in Legumes of the SemiArid Tropics,” In: M. Ivanaga, Ed., Genetic Engineering of Crop Plants for Abiotic Stress, JIRCAS Working Report No. 23, JIRCAS, Tsukuba, 2002, pp. 61-73.
[4] D. B. Lobell, M. B. Burke, C. Tebaldi, M. D. Mastrandrea, W. P. Falcon and R. L. Naylor, “Prioritizing Climate Change Adaptation Needs for Food Security in 2030,” Science, Vol. 319, No. 5863, 2008, pp. 607-610. doi:10.1126/science.1152339
[5] D. S. Battisti and R. L. Naylor, “Historical Warnings of Future Food Insecurity with Unprecedented Seasonal Heat,” Science, Vol. 323, No. 5911, 2009, pp. 240-244. doi:10.1126/science.1164363
[6] S. P. Long and D. R. Ort, “More than Taking the Heat: Crops and Global Change,” Current Opinion in Plant Biology, Vol. 13, No. 3, 2010, pp. 241-248. doi:10.1016/j.pbi.2010.04.008
[7] K. Sharma and V. Anjaiah, “An Efficient Method for the Production of Transgenic Plants of Peanut (Arachis hypogaea L.) through Agrobacterium tumefaciens-Mediated genetic Transformation,” Plant Science, Vol. 159, No. 1, 2000, pp. 7-19. doi:10.1016/S0168-9452(00)00294-6
[8] P. Bhatnagar-Mathur, et al., “Stress-Inducible Expression of AtDREB1A in Transgenic Peanut (Arachis hypogaea L.) Increases Transpiration Efficiency under Water-Limiting Conditions,” Plant Cell Reports, Vol. 26, No. 12, 2007, pp. 2071-2082. doi:10.1007/s00299-007-0406-8
[9] R. Mittler and E. Blumwald, “Genetic Engineering for Modern Agriculture: Challenges and Perspectives,” Annual Review of Plant Biology, Vol. 61, 2010, pp. 443-462. doi:10.1146/annurev-arplant-042809-112116
[10] R. K. Varshney, K. C. Bansal, P. K. Aggarwal, S. K. Datta and P. Q. Craufurd, “Agricultural Biotechnology for Crop Improvement in a Variable Climate: Hope or Hype?” Trends in Plant Science, Vol. 16, No. 7, 2011, pp. 363371. doi:10.1016/j.tplants.2011.03.004
[11] J. Deikman, M. Petracek and J. E. Heard, “Drought Tolerance through Biotechnology: Improving Translation from the Laboratory to Farmers’ Fields,” Current Opinion in Biotechnology, Vol. 23, No. 2, 2012, pp. 243-250. doi:10.1016/j.copbio.2011.11.003
[12] S. Yang, B. Vanderbeld, J. Wang and Y. Huang, “Narrowing Down the Targets: Towards Successful Genetic Engineering of Drought-Tolerant Crops,” Molecular Plant, Vol. 3, No. 3, 2010, pp. 469-490. doi:10.1093/mp/ssq016
[13] K. Century, T. L. Reuber and O. J. Ratcliffe, “Regulating the Regulators: The Future Prospects for TranscriptionFactor-Based Agricultural Biotechnology Products,” Plant Physiology, Vol. 147, No. 1, 2008, pp. 20-29. doi:10.1104/pp.108.117887
[14] D. Todaka, N. Kazuo, S. Kazuo and Y.-S. Kazuko, “Toward Understanding Transcriptional Regulatory Networks in Abiotic Stress Responses and Tolerance in Rice,” Abiotic Stress in Rice, Vol. 5, 2012, p. 6.
[15] P. Ozias-Akins, et al., “Regeneration of Transgenic Peanut Plants from Stably Transformed Embryogenic Callus,” Plant Science, Vol. 93, No. 1-2, 1993, pp. 185-194. doi:10.1016/0168-9452(93)90048-5
[16] M. Cheng, D. C. H. His and G. C. Phillips, “Recovery of Transformants of Valencia-Type Peanut Using Agrobacterium tumefaciens,” Peanut Science, Vol. 21, No. 2, 1994, pp. 84-88. doi:10.3146/i0095-3679-21-2-3
[17] M. Cheng, R. L. Jarret, Z. Li, A. Xing and J. W. Demski, “Production of Fertile Transgenic Peanut (Arachis hypogaea L.) Plants Using Agrobacterium tumefaciens,” Plant Cell Reports, Vol. 15, No. 9, 1996, pp. 653-657. doi:10.1007/BF00231918
[18] S. Eapen and L. George, “Agrobacterium tumefaciens Mediated Gene Transfer in Peanut (Arachis hypogaea L.),” Plant Cell Reports, Vol. 13, No. 10, 1994, pp. 582-586. doi:10.1007/BF00234516
[19] D. M. Livingstone and R. G. Birch, “Plant Regeneration and Microprojectile-Mediated Gene Transfer in Embryonic Leaflets of Peanut (Arachis hypogaea L.),” Australian Journal of Plant Physiology, Vol. 22, No. 4, 1995, pp. 585-591. doi:10.1071/PP9950585
[20] C. Singsit, et al., “Expression of a Bacillus Thuringiensis cryIA(c) Gene in Transgenic Peanut Plants and Its Efficiency against Lesser Cornstalk Borer,” Transgenic Research, Vol. 6, No. 2, 1997, pp. 169-176. doi:10.1023/A:1018481805928
[21] H. Yang, C. Singsit, A. Wang, D. Gonsalves and P. OziasAkins, “Transgenic Peanut Plants Containing a Nucleocapsid Protein Gene of Tomato Spotted Wilt Virus Show Divergent Levels of Gene Expression,” Plant Cell Reports, Vol. 17, No. 9, 1998, pp. 693-699. doi:10.1007/s002990050467
[22] A. H. McKently, G. A. Moore, H. Doostdar and R. P. Niedz, “Agrobacterium-Mediated Transformation of Peanut (Arachis hypogaea L.) Embryo Axes and the Development of Transgenic Plants,” Plant Cell Reports, Vol. 14, No. 11, 1995, pp. 699-703. doi:10.1007/BF00232650
[23] V. K. Rohini and K. S. Rao, “Transformation of Peanut (Arachis hypogaea L.): A Non-Tissue Culture Based Approach for Generating Transgenic Plants,” Plant Science, Vol. 150, No. 1, 2000, pp. 41-49. doi:10.1016/S0168-9452(99)00160-0
[24] H. Qin, et al., “Regulated Expression of an Isopentenyltransferase Gene (IPT) in Peanut Significantly Improves Drought Tolerance and Increases Yield under Field Conditions,” Plant and Cell Physiology, Vol. 52, No. 11, 2011, pp. 1904-1914. doi:10.1093/pcp/pcr125
[25] H. Qin, et al., “Expression of the Arabidopsis Vacuolar H+-Pyrophosphatase Gene AVP1 in Peanut to Improve Drought and Salt Tolerance,” Plant Biotechnology Reports, 2012. doi:10.1007/s11816-012-0269-5
[26] M. Banjara, L. Zhu, G. Shen, P. Payton and H. Zhang, “Expression of an Arabidopsis Sodium/Proton Antiporter Gene (AtNHX1) in Peanut to Improve Salt Tolerance,” Plant Biotechnology Report, Vol. 6, 2011, pp. 59-67.
[27] K. Yamaguchi-Shinozaki and K. Shinozaki, “Organizantion of Cis-Acting Regulatory Elements in Osmoticand Cold-Stress-Responsive Promoters,” Trends in Plant Science, Vol. 10, 2005, pp. 88-94. doi:10.1016/j.tplants.2004.12.012
[28] Y. Ito, et al., “Functional Analysis of Rice DREB1/CBFType Transcription Factors Involved in Coldresponsive Gene Expression in Transgenic Rice,” Plant Biotechnology Reports, Vol. 47, No. 1, 2006, pp. 141-153. doi:10.1093/pcp/pci230
[29] K. Datta, N. Baisakh, M. Ganguly, S. Krishnan, K. Yamaguchi-Shinozaki and S. K. Datta, “Overexpression of Arabidopsis and Rice Stress Genes’ Inducible Transcription Factor Confers Drought and Salinity Tolerance to Rice,” Plant Biotechnology Journal, Vol. 10, No. 5, 2012, pp. 579-586. doi:10.1111/j.1467-7652.2012.00688.x
[30] H. Sakakibara, “CYTOKININS: Activity, Biosynthesis, and Translocation,” Annual Review of Plant Biology, Vol. 57, 2006, pp. 431-449. doi:10.1146/annurev.arplant.57.032905.105231
[31] A. E. Richmond and A. Lang, “Effect of Kinetin on Protein Content and Survival of Detached Xanthium Leaves,” Science, Vol. 125, No. 3249, 1957, pp. 650-651. doi:10.1126/science.125.3249.650-a
[32] C. M. Smart, S. R. Scofield, M. W. Bevan and T. A. Dyer, “Delayed Leaf Senescence in Tobacco Plants Transformed with tmr, a Gene for Cytokinin Production in Agrobacterium,” Plant Cell, Vol. 3, 1991, pp. 647-656.
[33] B. Martineau, C. M. Houck, R. E. Sheehy and W. R. Hiatt, “Fruit-Specific Expression of the A. tumefaciens Isopentenyl Transferase Gene in Tomato: Effects on Fruit Ripening and Defense-Related Gene Expression in Leaves,” Plant Journal, Vol. 5, No. 1, 1994, pp. 11-19. doi:10.1046/j.1365-313X.1994.5010011.x
[34] S. Gan and R. M. Amasino, “Inhibition of Leaf Senescence by Autoregulated Production of Cytokinin,” Science, Vol. 270, No. 5244, 1995, pp. 1986-1988. doi:10.1126/science.270.5244.1986
[35] R. M. Rivero, et al., “Delayed Leaf Senescence Induces Extreme Drought Tolerance in a Flowering Plant,” Proceedings of National Academy of Sciences of the United States of America, Vol. 104, No. 49, 2007, pp. 1963119636. doi:10.1073/pnas.0709453104
[36] Z. Peleg, M. Reguera, H. Walia and E. Blumwald, “Cytokinin Mediated Source-Sink Modifications Improve Drought Tolerance and Increases Grain Yield in Rice under Water Stress,” Plant Biotechnology Journal, Vol. 9, No. 7, 2011, pp. 747-758. doi:10.1111/j.1467-7652.2010.00584.x
[37] M. P. Apse, G. S. Aharon, W. A. Snedden and E. Blumwald, “Salt Tolerance Conferred by Overexpression of a Vacuolar Na+/H+ Antiport in Arabidopsis,” Science, Vol. 285, No. 5431, 1999, pp. 1256-1258. doi:10.1126/science.285.5431.1256
[38] E. Blumwald, “Salt Transport and Salt Resistance in Plants and Other Organisms,” Current Opinion in Cell Biology, Vol. 12, No. 4, 2000, pp. 431-434. doi:10.1016/S0955-0674(00)00112-5
[39] H. X. Zhang and E. Blumwald, “Transgenic Salt-Tolerant Tomato Plants Accumulate Salt in Foliage but Not in Fruit,” Nature Biotechnology, Vol. 19, 2001, pp. 765-768. doi:10.1038/90824
[40] H. X. Zhang, J. N. Hodson, J. P. Williams and E. Blumwald, “Engineering Salt-Tolerant Brassica Plants: Characterization of Yield and Seed Oil Quality in Transgenic Plants with Increased Vacuolar Sodium Accumulation,” Proceedings of National Academy of Sciences of the United States of America, Vol. 98, No. 22, 2001, pp. 1283212836. doi:10.1073/pnas.231476498
[41] C. He, et al., “Expression of an Arabidopsis Vacuolar Sodium/Proton Antiporter Gene in Cotton Improves Photosynthetic Performance under Salt Conditions and Increases Fiber Yield in the Field,” Plant Biotechnology Reports, Vol. 46, No. 11, 2005, pp. 1848-1854. doi:10.1093/pcp/pci201
[42] T. X. Li, et al., “Stable Expression of Arabidopsis Vacuolar Na+/H+ Antiporter Gene AtNHX1, and Salt Tolerance in Transgenic Soybean for over Six Generations,” Chinese Science Bulletin., Vol. 55, No. 12, 2010, pp. 11271134. doi:10.1007/s11434-010-0092-8
[43] R. A. Gaxiola, G. R. Fink and K. D. Hirschi, “Genetic Manipulation of Vacuolar Proton Pumps and Transporters,” Plant Physiology, Vol. 129, No. 3, 2002, pp. 967973. doi:10.1104/pp.020009
[44] R. A. Gaxiola, et al., “Droughtand Salt-Tolerant Plants Result from Overexpression of the AVP1 H+-Pump,” Proceedings of National Academy of Sciences of the United States of America, Vol. 98, No. 20, 2001, pp. 1144411449. doi:10.1073/pnas.191389398
[45] S. Park, et al., “Up-Regulation of a H+-Pyrophosphatase (H+-PPase) as a Strategy to Engineer Drought-Resistant Crop Plants,” Proceedings of National Academy of Sciences of the United States of America, Vol. 102, No. 52, 2005, pp. 18830-18835. doi:10.1073/pnas.0509512102
[46] J. Li, et al., “Arabidopsis H+-PPase AVP1 Regulates AuxinMediated Organ Development,” Science, Vol. 310, No. 5745, 2005, pp. 121-125. doi:10.1126/science.1115711
[47] F. Y. Zhao, X. J. Zhang, P. H. Li, Y. X. Zhao and H. Zhang, “Co-Expression of the Suaeda salsa SsNHX1 and Arabidopsis AVP1 Confer Greater Salt Tolerance to Transgenic Rice than the Single SsNHX1,” Molecular Breeding, Vol. 17, No. 4, 2006, pp. 341-353. doi:10.1007/s11032-006-9005-6
[48] B. Li, A. Wei, C. Song, N. Li and J. Zhang, “Heterologous Expression of the TsVP Gene Improves the Drought Resistance of Maize,” Plant Biotechnology Journal, Vol. 6, No. 2, 2008, pp. 146-159. doi:10.1111/j.1467-7652.2007.00301.x
[49] S. Lv, K. Zhang, Q. Gao, L. Lian, Y. Song and J.-R. Zhang, “Overexpression of an H+-PPase from Thellungiella halophila in Cotton Enhances Salt Tolerance and Improves Growth and Photosynthetic Performance,” Plant Biotechnology Reports, Vol. 49, No. 8, 2008, pp. 1150-1164. doi:10.1093/pcp/pcn090
[50] S. Lv, L.-J. Lian, P. L. Tao, Z.-X. Li, K.-W. Zhang and J.-R. Zhang, “Overexpression of Thellungiella halophila H+-PPase (TsVP) in Cotton Enhances Drought Stress Resistance of Plants,” Planta, Vol. 229, No. 4, 2009, pp. 899-910. doi:10.1007/s00425-008-0880-4
[51] V. Pasapula, et al., “Expression of an Arabidopsis Vacuolar H+-Pyrophosphatase Gene (AVP1) in Cotton Improves Droughtand Salt-Tolerance and Increases Fiber Yield in the Field Conditions,” Plant Biotechnology Journal, Vol. 9, No. 1, 2011, pp. 88-99. doi:10.1111/j.1467-7652.2010.00535.x
[52] H. Hu, et al., “Overexpressing a NAM, ATAF, and CUC (NAC) Transcription Factor Enhances Drought Resistance and Salt Tolerance in Rice,” Proceedings of National Academy of Sciences of the United States of America, Vol. 103, No. 35, 2006, pp. 12987-12992. doi:10.1073/pnas.0604882103
[53] Z. Li, et al., “Heterologous Expression of OsSIZ1, a Rice SUMO E3 Ligase, Enhances Broad Abiotic Stress Tolerance in Transgenic Creeping Bentgrass,” Plant Biotechnology Journal, Vol. 11, No. 4, 2012, pp. 432-445. doi:10.1111/pbi.12030
[54] J. R. Park, I. McFarlane, R. H. Phipps and G. Ceddia, “The Role of Transgenic Crops in Sustainable Development,” Plant Biotechnology Journal, Vol. 9, No. 1, 2011, pp. 2-21. doi:10.1111/j.1467-7652.2010.00565.x
[55] C. James, “Global Status of Commercialised Biotech/GM Crops,” ISAAA Brief 41, Executive Summary, 2009.
[56] A. McHughen and S. Smyth, “US Regulatory System for Genetically Modified [Genetically Modified Organism (GMO), rDNA or Transgenic] Crop Cultivars,” Plant Biotechnology Journal, Vol. 6, No. 1, 2008, pp. 2-12.
[57] P. G. Lemaux, “Genetically Engineered Plants and Foods: A Scientist’s Analysis of the Issues (Part I),” Annual Review of Plant Biology, Vol. 59, 2008, pp. 771-812. doi:10.1146/annurev.arplant.58.032806.103840
[58] P. G. Lemaux, “Genetically Engineered Plants and Foods: A Scientist’s Analysis of the Issues (Part II),” Annual Review of Plant Biology, Vol. 60, 2009, pp. 511-559. doi:10.1146/annurev.arplant.043008.092013

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.