The Diffusion of Tc-99 in Beishan Granite-Temperature Effect


In the safety assessment of a potential site for high-level radioactive wastes (HLW) disposal, the investigation on the geochemical behaviors of key radionuclides with the possibility for releasing from the potential repository is an important aspect. Due to the high mobility of technetium under most repository conditions, lots of research works were performed to investigate the diffusion of technetium in different potential rocks. In spite of these studies, there remains a lack of data addressing temperature effects. In this paper, the diffusion of 99Tc in Beishan granite at temperatures from 25℃ to 55℃ was studied with laboratory small scale diffusion devices. The experimental data were fitted with a finite difference scheme to get the effective diffusion coefficient (De) of . The results indicated that the relationship of De with temperatures could be described as the modified Stokes-Einstein equation, and the formation factor of Beishan granite was constant in the temperature range of 25℃ - 55℃ with the value of (3.91 ± 1.77) × 10-4.

Share and Cite:

C. Li, Z. Zheng, X. Liu, T. Chen, W. Tian, L. Wang, C. Wang and C. Liu, "The Diffusion of Tc-99 in Beishan Granite-Temperature Effect," World Journal of Nuclear Science and Technology, Vol. 3 No. 1, 2013, pp. 33-39. doi: 10.4236/wjnst.2013.31006.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] D. G. Bennett and R. Gens, “Overview of European Concepts for High-Level Waste and Spent Fuel Disposal with Special Reference Waste Container Corrosion,” Journal of Nuclear Materials, Vol. 379, No. 1-3, 2008, pp. 1-8. doi:10.1016/j.jnucmat.2008.06.001
[2] H. Hokmark and B. Falth, “Thermal Dimensioning of the Deep Repository,” 2003, p. 83.
[3] T. Tarandi, “Calculated Temperature Field in and around Repository for Spent Nuclear Fuel,” KBS Teknisk Rapport, Vol. 83, No. 22, 1983, p. 32.
[4] B. B. Looney and R. W. Falta, “Vadose Zone: Science and Technology Solutions,” Battelle Press, Columbus, 2000.
[5] J. R. Boulding and J. S. Ginn, “Practical Handbook of Soil, Vadoze Zone and Groundwater Contamination, Assessment, Prevention, and Remediation,” A. F. Lewis, New York, 2004.
[6] F. G. Sanchez, L. R. Van Loon, T. Gimmi, et al., “SelfDiffusion of Water and Its Dependence on Temperature and Ionic Strength in Highly Compacted Montmorillonite, Illite and Kaolinite,” Applied Geochemistry, Vol. 23, No. 12, 2008, pp. 3840-3851. doi:10.1016/j.apgeochem.2008.08.008
[7] A. V. Simonyan, H. Behrens and S. Dultz, “Diffusive Transport of Water in Porous Feldspars from Granitic Saprolites: In Situ Experiments Using FTIR Spectroscopy,” Geochimica et Cosmochimica Acta, Vol. 73, No. 23, 2009, pp. 7019-7033. doi:10.1016/j.gca.2009.08.031
[8] E. O. Holzbecher, “Modeling Density-Driven Flow in Porous Media: Principles, Numerics, Software,” Springer, Berlin, 1998. doi:10.1007/978-3-642-58767-2
[9] D. A. Nield, “Convection in Porous Media,” Springer, Berlin, 2006.
[10] M. M. Krol, B. E. Sleep and R. L. Johnson, “Impact of Low-Temperature Electrical Resistance Heating on Subsurface Flow and Transport,” Water Resources Research, Vol. 47, No. 5, 2011.
[11] G. Q. Xu, J. Wang, Y. X. Jin, et al., “Progress in Site Selection for China’s High Level Radioactive Waste Repository,” Secondary Progress in Site Selection for China’s High Level Radioactive Waste Repository, 1995.
[12] M. Z. Min, X. Z. Luo, J. Wang, et al., “Sorption Behavior of U(VI), U-234(VI) and U-238(VI) onto Fracture-Filling Clays in Beishan Granite, Gansu: Application to Selecting the Site of High-Level Radwaste Repository in China,” Science in China Series D: Earth Sciences, Vol. 48, No. 10, 2005, pp. 1649-1655. doi:10.1360/03yd0475
[13] Z. X. Sun and Z. S. Zhang, “Geochemical Modeling of Water-Granite Interaction in Beishan Area, NW-China,” Geochimica et Cosmochimica Acta, Vol. 72, No. 12, 2008, pp. A917-A917.
[14] Y. H. Dong, G. M. Li and M. Li, “Numerical Modeling of the Regional Ground Water Flow in Beishan Area, Gansu Province,” Chinese Science Bulletin, Vol. 54, No. 17, 2009, pp. 3112-3115. doi:10.1007/s11434-009-0344-7
[15] C. J. Lu, C. L. Liu, T. Chen, et al., “Determination of the Effective Diffusion Coefficient for 125I(-) in Beishan Granite,” Radiochimica Acta, Vol. 96, No. 2, 2008, pp. 111-117. doi:10.1524/ract.2008.1469
[16] T. Chen, M. Sun, C. Li, et al., “The Influence of Temperature on the Diffusion of (125)I(-) in Beishan Granite,” Radiochimica Acta, Vol. 98, No. 5, 2010, pp. 301305. doi:10.1524/ract.2010.1717
[17] C. L. Liu, X. Y. Wang, S. S. Li, et al., “Diffusion of Tc-99 in Granite: A Small Scale Laboratory Simulation Experiment,” Radiochimica Acta, Vol. 89, No. 10, 2001, pp. 639-642. doi:10.1524/ract.2001.89.10.639
[18] D. J. Liu, X. H. Fan, J. Yao, et al., “Diffusion of Tc-99 in Granite under Aerobic and Anoxic Conditions,” Journal of Radioanalytical and Nuclear Chemistry, Vol. 268, No. 3, 2006, pp. 481-484. doi:10.1007/s10967-006-0194-6
[19] D. Q. Cui and T. Eriksen, “Reactive Transport of Sr, Cs and Tc through a Column Packed with Fracture-Filling Material,” Radiochimica Acta, Vol. 82, 1998, pp. 287292.
[20] H. Vinsova, P. Vecernik and V. Jedinakova-Krizova, “Sorption Characteristics of Tc-99 onto Bentonite Material with Different Additives under Anaerobic Conditions,” Radiochimica Acta, Vol. 94, No. 8, 2006, pp. 435440. doi:10.1524/ract.2006.94.8.435
[21] W. Um and R. J. Serne, “Sorption and Transport Behavior of Radionuclides in the Proposed Low-Level Radioactive Waste Disposal Facility at the Hanford Site, Washington,” Radiochimica Acta, Vol. 93, No. 1, 2005, pp. 57-63. doi:10.1524/ract.
[22] X. K. Wang, X. L. Tan, Q. L. Ning, et al., “Simulation of Radionuclides Tc-99 and Am-243 Migration in Compacted Bentonite,” Applied Radiation and Isotopes, Vo. 62, No. 5, 2005, pp. 759-764. doi:10.1016/j.apradiso.2004.10.012
[23] A. Winkler, H. Bruhl, C. Trapp, et al., “Mobility of Technetium in Various Rocks and Defined Combinations of Natural Minerals,” Radiochimica Acta, Vol. 44-45, 1988, pp. 183-186.
[24] D. W. Oscarson, H. B. Hume and J. W. Choi, “Diffusive Transport in Compacted Mixtures of Clay and Crushed Granite,” Radiochimica Acta, Vol. 65, No. 3, 1994, pp. 189-194.
[25] Z. Szanto, E. Svingor, M. Molnar, et al., “Diffusion of H-3, Tc-99, I-125, Cl-36 and Sr-85 in Granite, Concrete and Bentonite,” Journal of Radioanalytical and Nuclear Chemistry, Vol. 252, No. 1, 2002, pp. 133-138. doi:10.1023/A:1015256308843
[26] K. H. Lieser and C. Bauscher, “Technetium in the Hydrosphere and in the Geosphere. 1. Chemistry of Technetium and Iron in Natural-Waters and Influence of the Redox Potential on the Sorption of Technetium,” Radiochimica Acta, Vol. 42, No. 4, 1987, pp. 205-213.
[27] I. Alliot, C. Alliot, P. Vitorge, et al., “Speciation of Technetium(IV) in Bicarbonate Media,” Environmental Science & Technology, Vol. 43, No. 24, 2009, pp. 91749182. doi:10.1021/es9021443
[28] K. Skagius and I. Neretnieks, “Porosities and Diffusivities of Some Nonsorbing Species in Crystalline Rocks,” Water Resources Research, Vol. 22, No. 3, 1986, pp. 389-398. doi:10.1029/WR022i003p00389
[29] M. Zhang and M. Takeda, “Theoretical Evaluation of the Through-Diffusion Test for Determining the Transport Properties of Geologic Materials,” WM’05 Conference, Tucson, 27 February-3 March 2005.
[30] M. H. Bradbury and A. Green, “Measurement of Important Parameters Determining Aqueous Phase Diffusion Rates through Crystalline Rock Matrices,” Journal of Hydrology, Vol. 82, No. 1-2, 1985, pp. 39-55. doi:10.1016/0022-1694(85)90045-9
[31] K. B. Harvey, “Measurement of Diffusive Properties of Intact Rock,” 1996, p. 97.
[32] R. Mills and V. M. M. Lobo, “Self-Diffusion in Electrolyte Solutions: A Critical Examination of Data Compiled from the Literature,” 1989, p. 3.
[33] J. A. Dean, “Lange’s handbook of chemistry,” 13th Edition, McGraw-Hill, New York, 1985.
[34] H. Sato, M. Yui and H. Yoshikawa, “Ionic Diffusion Coefficient of Cs+, Pb2+, Sm3+, Ni2+, and in Free Water Determined from Conductivity Measurements,” Journal of Nuclear Science and Technology, Vol. 33, No. 12, 1996, pp. 950-955. doi:10.1080/18811248.1996.9732037
[35] J. S. Liu, L. Martin and I. Neretnieks, “Data and Uncertainly Assessment: Matrix Diffusivity and Porosity in Situ,” SKB R-06-111, Blekholmstorget, 2006.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.