[1]
|
Bodin, J. Ma, X. J. Xin and P. Krishnaswami, “A Meshless Integral Method Based on Regularized Boundary Integral Equation,” Computer Methods in Applied Mechanics and Engineering, Vol. 195, No. 44-47, 2006, pp. 6258-6286. Hdoi:10.1016/j.cma.2005.12.005
|
[2]
|
A. E. Green and P. M. Naghdi, “A General Theory of an Elasto-Plastic Continuum,” Archive for Rational Mechanics and Analysis, Vol. 18, No. 4, 1965, pp. 251-281.
Hdoi:10.1007/BF00251666
|
[3]
|
J. H. Chiou, J. D. Lee and A. G. Erdman, “Comparison between Two Theories of Plasticity,” Computers & Structures, Vol. 24, No. 1, 1986, pp. 23-37.
Hdoi:10.1016/0045-7949(86)90332-9
|
[4]
|
E. H. Lee, “Elastic-Plastic Deformation at Finite Strains,” Journal of Applied Mechanics, Vol. 36, No. 1, 1969, pp. 1-6. Hdoi:10.1115/1.3564580
|
[5]
|
J. H. Chiou, J. D. Lee and A. G. Erdman, “Development of a Three-Dimensional Finite Element Program for Large Strain Elastic-Plastic Solids,” Computers & Structures, Vol. 36, No. 4, 1990, pp. 631-645.
Hdoi:10.1016/0045-7949(90)90078-G
|
[6]
|
J. D. Lee, “A Large-Strain Elastic-Plastic Finite Element Analysis of Rolling Process,” Computer Methods in Applied Mechanics and Engineering, Vol. 161, No. 3-4, 1998, pp. 315-347. Hdoi:10.1016/S0045-7825(97)00324-1
|
[7]
|
P. Hu, “Finite-Element Numerical Analysis of Sheet Metal under Unaxial Tension with a New Yield Criterion,” Journal of Materials Processing Technology, Vol. 31, No. 1-2, 1992, pp. 245-253.
Hdoi:10.1016/0924-0136(92)90025-N
|
[8]
|
T. Belytschko, P. Krysl and Y. Krongauz, “A Three-Dimensional Explicit Element-Free Galerkin Method,” International Journal for Numerical methods in Fluids, Vol. 24, No. 12, 1997, pp. 1253-1270.
Hdoi:10.1002/(SICI)1097-0363(199706)24:12<1253::AID-FLD558>3.0.CO;2-Z
|
[9]
|
R. Rossi and M. K. Alves, “On the Analysis of an EFG Method under Large Deformations and Volumetric Locking,” Computational Mechanics, Vol. 39, No. 4, 2007, pp. 381-399. Hdoi:10.1007/s00466-006-0035-z
|
[10]
|
Y. P. Chen, A. Eskandarian, M. Oskard and J. D. Lee, “Meshless Analysis of High-Speed Impact,” Theoretical and Applied Fracture Mechanics, Vol. 44, No. 3, 2005, pp. 201-207. Hdoi:10.1016/j.tafmec.2005.09.007
|
[11]
|
A. Eskandarian, Y. P. Chen, M. Oskard and J. D. Lee, “Meshless Analysis of Fracture. Plasticity and Impact,” Proceedings of ASME 2003 International Mechanical Engineering Congress and Exposition, Washington DC, 15-21 November 2003, pp. 89-97.
|
[12]
|
Y. Xiong, H. Cui and S. Long, “Meshless local PetrovGalerkin Method for Large Deformation Analysis,” Chinese Journal of Computational Mechanics, Vol. 26, No. 3, 2009, pp. 353-357.
|
[13]
|
D. Hu, S. Long, X. Han and G. Li, “A Meshless Local Petrov-Galerkin Method for Large Deformation Contact Analysis of Elastomers,” Engineering Analysis with Boundary Elements, Vol. 31, No. 7, 2007, pp. 657-666.
Hdoi:10.1016/j.enganabound.2006.11.005
|
[14]
|
Z. Han, A. Rajendran and S. Atluri, “Meshless Local Petrov-Galerkin (MLPG) Approaches for Solving Nonlinear Problems with Large Deformations and Rotations,” Computer Modeling in Engineering and Sciences, Vol. 10, No. 1, 2005, pp 1-12.
|
[15]
|
D. Li, Z. Lu and W. Kang, “A Coupled Finite Element and Meshless Local Petrov-Galerkin Method for Large Deformation Problems,” Advanced Materials Research, Vol. 97-101, 2010, pp. 3777-3780.
Hdoi:10.4028/www.scientific.net/AMR.97-101.3777
|
[16]
|
Y. Gu, Q. Wang and K. Lam, “A Meshless Local Kriging Method for Large Deformation Analyses,” Computer Methods in Applied Mechanics and Engineering, Vol. 196, No. 9-12, 2007, pp. 1673-1684.
Hdoi:10.1016/j.cma.2006.09.017
|
[17]
|
Y. Gu, C. Yan and P. Yarlagadda, “An Advanced Meshless Technique for Large Deformation Analysis of Metal Forming,” Australian Journal of Mechanical Engineering, Vol. 7, No. 1, 2009, pp. 25-32.
|
[18]
|
Y. Gu, “Meshless TL and UL Approaches for Large Deformation Analysis,” Advanced Materials Research, Vol. 139-141, 2010, pp. 893-896.
Hdoi:10.4028/www.scientific.net/AMR.139-141.893
|
[19]
|
H. Gun, S. Caliskan and A. Gun, “A Meshless Formulation of Euler-Bernoulli Beam Theory for Prediction of Large Deformation,” Textile Research Journal, Vol. 81, No. 10, 2011, pp. 1075-1080.
Hdoi:10.1177/0040517511398946
|
[20]
|
Q. Li and K. Lee, “An Adaptive Meshless Method for Analyzing Large Mechanical Deformation and Contacts,” Journal of Applied Mechanics, Transactions ASME, Vol. 75, No. 4, 2008, Article ID: 041014.
Hdoi:10.1115/1.2912938
|
[21]
|
Q. Li and K. Lee, “An Adaptive Meshless Method for Modeling Large Mechanical Deformation and Contacts,” IEEE International Conference on Robotics and Automation, Roma, 10-14 April 2007, pp. 1207-1212.
|
[22]
|
H. Zhu, W. Liu, Y. Cai and Y. Miao, “A Meshless Local Natural Neighbor Interpolation Method for Two-Dimension Incompressible Large Deformation Analysis,” Engineering Analysis with Boundary Elements, Vol. 31, No. 10, 2007, pp. 856-862.
Hdoi:10.1016/j.enganabound.2007.02.003
|
[23]
|
S. Wang, “A Large-Deformation Galerkin SPH Method for Fracture,” Journal of Engineering Mathematics, Vol. 71, No. 3, 2011, pp. 305-318.
Hdoi:10.1007/s10665-011-9455-7
|
[24]
|
J. Chen, C. Pan, C. Wu and W. Liu, “Reproducing Kernel Particle Methods for Large Deformation Analysis of NonLinear Structures,” Computer Methods in Applied Mechanics and Engineering, Vol. 139, No. 1-4, 1996, pp. 195-227. Hdoi:10.1016/S0045-7825(96)01083-3
|
[25]
|
S. Jun, W. Liu and T. Belytschko, “Explicit Reproducing Kernel Particle Methods for Large Deformation Problems,” International Journal for Numerical Methods in Engineering, Vol. 41, No. 1, 1998, pp. 137-166.
Hdoi:10.1002/(SICI)1097-0207(19980115)41:1<137::AID-NME280>3.0.CO;2-A
|
[26]
|
K. Liew, T. Ng and Y. Wu, “Meshfree Method for Large Deformation Analysis—A Reproducing Kernel Particle Approach,” Engineering Structures, Vol. 24, No. 5, 2002, pp. 543-551. Hdoi:10.1016/S0141-0296(01)00120-1
|
[27]
|
D. Li, J. Xu and W. Kang, “Applying Element-Free Galerkin Method to Simulate Die Forging Problems,” Advanced Materials Research, Vol. 139-141, 2010, pp. 1174-1177. Hdoi:10.4028/www.scientific.net/AMR.139-141.1174
|
[28]
|
W. Quak, A. van den Boogaard and J. Huétink, “Meshless Methods and Forming Processes,” International Journal of Material Forming, Vol. 2, No. S1, 2009, pp. 585-588.
|
[29]
|
J. Ma, X. J. Xin and P. Krishnaswami, “An Elastoplastic Meshless Integral Method Based on Regularized Boundary Integral Equation,” Computer Methods in Applied Mechanics and Engineering, Vol. 197, No. 51-52, 2008, pp. 4774-4788. Hdoi:10.1016/j.cma.2008.06.019
|
[30]
|
J. Ma, “Application of Meshless Integral Method to Metal Forming,” Proceedings of the ASME Design Engineering Technical Conference, Montreal, 15-18 August 2010, pp. 141-151.
|
[31]
|
S. N. Atluri, J. Sladeck, V. Sladeck and T. Zhu, “The Local Boundary Integral Equation (LBIE) and Its Meshless Implementation for Linear Elasticity,” Computational Mechanics, Vol. 25, No. 2-3, 2000, pp. 180-198.
Hdoi:10.1007/s004660050468
|
[32]
|
A. H. Stroud and D. Secrest, “Gaussian Quadrature Formulas,” Prentice-Hall, Upper Saddle River, 1966.
|
[33]
|
Y. Y. Lu, T. Belytschko and L. Gu, “A New Implementation of the Element Free Galerkin Method,” Computer Methods in Applied Mechanics and Engineering, Vol. 113, No. 3-4, 1994, pp. 397-414.
Hdoi:10.1016/0045-7825(94)90056-6
|
[34]
|
T. Belytschko, Y. Y. Lu and L. Gu, “Element Free Galerkin Method,” International Journal for Numerical Methods in Engineering, Vol. 37, No. 2, 1994, pp. 229-256.
Hdoi:10.1002/nme.1620370205
|
[35]
|
L. Gavete, J. J. Benito, S. Falcon and A. Ruiz, “Implementation of Essential Boundary Conditions in a Meshless Method,” Communications in Numerical Methods. Engineering, Vol. 16, No. 6, 2000, pp. 409-421.
Hdoi:10.1002/1099-0887(200006)16:6<409::AID-CNM349>3.0.CO;2-Z
|
[36]
|
T. Zhu and S. N. Atluri, “A Modified Collocation Method and a Penalty Foumulation for Enforcing the Essential Boundary Conditions in the Element Free Galerkin Method,” Computational Mechanics, Vol. 21, No. 3, 1998, pp. 211-222. Hdoi:10.1007/s004660050296
|
[37]
|
D. N. Arnold, F. Brezzi, B. Cockburn and L. D. Marini, “Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems,” SIMA Journal on Numerical Analysis, Vol. 39, No. 5, 2002, pp. 1749-1779.
Hdoi:10.1137/S0036142901384162
|
[38]
|
D. Hegen, “Element-Free Galerkin Methods in Combination with Finite Element Approaches,” Computer Methods in Applied Mechanics and Engineering, Vol. 19, No. 1, 1996, pp. 120-135.
|
[39]
|
J. Gosz and W. K. Liu, “Admissible Approximations for Essential Boundary Conditions in the Reproducing Kernel Particle Method,” Computational Mechanics, Vol. 19, No. 2, 1996, pp. 120-135. Hdoi:10.1007/BF02824850
|
[40]
|
F. C. Gunther and W. K. Liu, “Implementation of Boundary Conditions for Meshless Methods,” Computer Methods in Applied Mechanics and Engineering, Vol. 163, No. 1-4, 1998, pp. 205-230.
Hdoi:10.1016/S0045-7825(98)00014-0
|
[41]
|
C. A. M. Duarte and J. T. Oden, “An h-p Adaptive Method Using Clouds,” Computer Methods in Applied Mechanics and Engineering, Vol. 139, No. 1-4, 1996, pp. 237-262. Hdoi:10.1016/S0045-7825(96)01085-7
|
[42]
|
Y. Y. Lu, T. Belytschko and M. Tabbara, “Element-Free Galerkin Method for Wave Propagation and Dynamic Fracture,” Computer Methods in Applied Mechanics and Engineering, Vol. 126, No. 1-2, 1995, pp. 131-153.
Hdoi:10.1016/0045-7825(95)00804-A
|
[43]
|
X. Zhang, X. Liu, M. W. Lu and Y. Chen, “Imposition of Essential Boundary Conditions by Displacement Constraint Equations in Meshless Methods,” Communications in Numerical Methods in Engineering, Vol. 17, No. 3, 2001, 165-178. Hdoi:10.1002/cnm.395
|
[44]
|
T. Zhu and S. N. Atluri, “A Modified Collocation Method and a Penalty Foumulation for Enforcing the Essential Boundary Conditions in the Element Free Galerkin Method,” Computational Mechanics, Vol. 21, No. 3, 1998, pp. 211-222. Hdoi:10.1007/s004660050296
|
[45]
|
G. J. Wagner and W. K. Liu, “Application of Essential Boundary Conditions in Mesh-Free Methods: A Corrected Collocation Method,” International Journal for Numerical Methods in Engineering, Vol. 47, No. 8, 2000, pp. 1367-1379.
Hdoi:10.1002/(SICI)1097-0207(20000320)47:8<1367::AID-NME822>3.0.CO;2-Y
|
[46]
|
C. C. Wu and M. E. Plesha, “Essential Boundary Condition Enforcement in Meshless Methods: Boundary Flux Collocation Method,” International Journal for Numerical Methods in Engineering, Vol. 53, No. 3, 2002, pp. 499514. Hdoi:10.1002/nme.267
|
[47]
|
T. Belytschko, Y. Y. Lu and L. Gu, “Element Free Galerkin Method,” International Journal for Numerical Methods in Engineering, Vol. 37, No. 2, 1994, pp. 229-256.
Hdoi:10.1002/nme.1620370205
|
[48]
|
P. Krysl and T. Belytschko, “Analysis of Thin Plates by the Element-Free Galerkin Method,” Computational Mechanics, Vol. 17, No. 1, 1998, pp. 26-35.
|
[49]
|
W. K. Liu and Y. Chen, “Wavelet and Multiple Scale Reproducing Kernel Methods,” International Journal for Numerical Methods in Fluids, Vol. 21, No. 10, 1995, pp. 901-931.
|
[50]
|
N. R. Aluru, “A Reproducing Kernel Particle Method for Meshless Analysis of Microelectromechanical Systems,” Computational Mechanics, Vol. 23, No. 4, 1999, pp. 324338. Hdoi:10.1007/s004660050413
|
[51]
|
J. S. Chen, C. Pan and C. T. Wu, “A Lagrangian Reproducing Kernel Particle Method for Metal Forming Analysis,” Computational Mechanics, Vol. 22, No. 3, 1998, pp. 289-338. Hdoi:10.1007/s004660050361
|
[52]
|
J. S. Chen, C. Pan, C. T. Wu and W. K. Liu, “Reproducing Kernel Particle Methods for Large Deformation Analysis of Non-Linear Structures,” Computer Methods in Applied Mechanics and Engineering, Vol. 139, No. 1-4, 1996, pp. 195-227.
Hdoi:10.1016/S0045-7825(96)01083-3
|
[53]
|
T. Zhu, J.-D. Zhang and S. N. Atluri, “A Local Boundary Integral Equation (LBIE) Method in Computational Mechanics, and a Meshless Discretization Approach,” Computational Mechanics, Vol. 21, No. 3, 1998, pp. 223-235.
Hdoi:10.1007/s004660050297
|
[54]
|
J. Sladek, V. Sladeck and R. Van Keer, “Meshless Local Boundary Integral Equation for 2D Elastodynamic Problems,” International Journal for Numerical Methods in Engineering, Vol. 57, No. 2, 2003, pp. 235-249.
Hdoi:10.1002/nme.675
|
[55]
|
S. Long and Q. Zhang, “Analysis of Thin Plates by the Local Boundary Integral Equation (LBIE) Method,” Engineering Analysis with Boundary Elements, Vol. 26, No. 8, 2002, pp.707-718.
Hdoi:10.1016/S0955-7997(02)00025-5
|
[56]
|
T. Belytschko, W. K. Liu and B. Moran, “Nonlinear Finite Elements for Continua and Structures,” John Wiley & Sons, Ltd., Chichester, 2000.
|