Soil and Variety Effects on the Energy and Carbon Balances of Switchgrass-Derived Ethanol


This study examined the effects of soil and switchgrass variety on sustainability and eco-friendliness of switchgrass-based ethanol production. Using the Agricultural Land Management Alternatives with Numerical Assessment Criteria (ALMANAC) model, switchgrass biomass yields were simulated for several scenarios of soils and varieties. The yields were fed to the Integrated Biomass Supply Analysis and Logistics (IBSAL) model to compute energy use and carbon emissions in the biomass supply chain, which then were used to compute Net Energy Value (NEV) and Carbon Credit Balance (CCB), the indicators of sustainability and eco-friendliness, respectively. The results showed that the values of these indicators increased in the direction of heavier to lighter soils and on the order of north-upland, south-upland, north-lowland, and south-lowland varieties. The values of NEV and CCB increased in the direction of dry to wet year. Gaps among the varieties were smaller in a dry year than in a wet year. From south to north, NEV and CCB decreased for lowland varieties but increased for upland ones. Thus, the differences among the varieties decreased in the direction of lower to higher latitudes. The study demonstrated that the sustainability and eco-friendliness of switchgrass-based ethanol production could be increased with alternative soil and variety options.

Share and Cite:

Woli, P. , Paz, J. , Lang, D. , Baldwin, B. and Kiniry, J. (2012) Soil and Variety Effects on the Energy and Carbon Balances of Switchgrass-Derived Ethanol. Journal of Sustainable Bioenergy Systems, 2, 65-74. doi: 10.4236/jsbs.2012.24010.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] E. Gnansounou and A. Dauriat, “Techno-Economic Analysis of Lignocellulosic Ethanol: A Review,” Bioresource Technology, Vol. 101, No. 13, 2010, pp. 4980-4991. doi:10.1016/j.biortech.2010.02.009
[2] G. W. Huber and B. E. Dale, “Grassoline at the Pump,” Scientific American, Vol. 301, No. 1, 2009, pp. 52-59. doi:10.1038/scientificamerican0709-52
[3] J. Hill, E. Nelson, D. Tilman, S. Polasky and D. Tiffany, “Environmental, Economic, and Energetic Costs and Benefits of Biodiesel and Ethanol Biofuels,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 103, No. 30, 2006, pp. 11206-11210. doi:10.1073/pnas.0604600103
[4] S. B. McLaughlin, J. Bouton, D. Bransby, B. V. Conger, W. R. Ocumpaugh, D. J. Parrish, C. Taliaferro, K. P. Vogel and S. D. Wullschleger, “Developing Switchgrass as a Bioenergy Crop,” In: J. Janick, Ed., Perspectives on New Crops and New Uses, ASHS Press, Alexandria, 1999, pp. 282-299.
[5] M. A. Sanderson, J. C. Read and R. R. Reed, “Harvest Management of Switchgrass for Biomass Feedstock and Forage Production,” Agronomy Journal, Vol. 91, No. 1, 1999, pp. 5-10. doi:10.2134/agronj1999.00021962009100010002x
[6] S. B. McLaughlin, J. R. Kiniry, C. M. Taliaferro and D. D. Ugarte, “Projecting Yield and Utilization Potential of Switchgrass as an Energy Crop,” Advances in Agronomy, Vol. 90, 2006, pp. 267-297. doi:10.1016/S0065-2113(06)90007-8
[7] S. D. Wullschleger, E. B. Davis, M. E. Borsuk, C. A. Gunderson and L. R. Lynd, “Biomass Production in Switchgrass across the United States: Database Description and Determinants of Yield,” Agronomy Journal, Vol. 102, No. 4, 2010, pp. 1158-1168. doi:10.2134/agronj2010.0087
[8] D. J. Parrish and J. H. Fike, “The Biology and Agronomy of Switchgrass for Biofuels,” Critical Reviews in Plant Sciences, Vol. 24, No. 5-6, 2005, pp. 423-459. doi:10.1080/07352680500316433
[9] W. Zegada-Lizarazu, S. D. Wullschleger, S. S. Nair and A. Monti, “Crop Physiology,” In: A. Monti, Ed., Switchgrass: A Valuable Biomass Crop for Energy, Springer-Verlag, London, 2012, pp. 55-86. doi:10.1007/978-1-4471-2903-5_3
[10] J. R. Kiniry, C. R. Tischler and G. A. van Esbroeck, “Radiation Use Efficiency and Leaf CO2 Exchange for Diverse C4 Grasses,” Biomass and Bioenergy, Vol. 17, No. 2, 1999, pp. 95-112. doi:10.1016/S0961-9534(99)00036-7
[11] S. Mani, L. G. Tabil and S. Sokhansanj, “Grinding Performance and Physical Properties of Wheat and Barley Straws, Corn Stover and Switchgrass,” Biomass and Bioenergy, Vol. 27, No. 4, 2004, pp. 339-352. doi:10.1016/j.biombioe.2004.03.007
[12] C. L. Porter, “An Analysis of Variation between Upland and Lowland Switchgrass, Panicum virgatum L., in Central Oklahoma,” Ecology, Vol. 47, No. 6, 1966, pp. 980-992. doi:10.2307/1935646
[13] M. D. Casler, K. P. Vogel, C. M. Taliaferro and R. L. Wynia, “Latitudinal Adaptation of Switchgrass Populations,” Crop Science, Vol. 44, No. 1, 2004, pp. 293-303.
[14] M. A. Sanderson, R. L. Reed, S. McLaughlin, S. D. Wullschleger, B. V. Conger, D. J. Parrish, D. D. Wolf, C. Taliaferro, A. A. Hopkins, W. R. Ocumpaugh, M. A. Hussey, J. C. Read and C. R. Tischler, “Switchgrass as a Sustainable Bioenergy Crop,” Bioresource Technology, Vol. 56, No. 1, 1996, pp. 83-93. doi:10.1016/0960-8524(95)00176-X
[15] N. Di Virgilio, A. Monti and G. Venturi, “Spatial Variability of Switchgrass (Panicum virgatum L.) Yield as Related to Soil Parameters in a Small Field,” Field Crops Research, Vol. 101, No. 2, 2007, pp. 232-239. doi:10.1016/j.fcr.2006.11.009
[16] T. Persson, A. Garcia, Y. Garcia, J. O. Paz, J. W. Jones and G. Hoogenboom, “Maize Ethanol Feedstock Production and Net Energy Value as Affected by Climate Variability and Crop Management Practices,” Agricultural Systems, Vol. 100, No. 1-3, 2009, pp. 11-21. doi:10.1016/j.agsy.2008.11.004
[17] H. M. Benedict, “Effect of Day Length and Temperature on the Flowering and Growth of Four species of Grasses,” Journal of Agricultural Research, Vol. 61, No. 9, 1940, pp. 661-672.
[18] T. Persson, B. V. Ortiz, D. I. Bransby, W. Wu and G. Hoogenboom, “Determining the Impact of Climate and Soil Variability on Switchgrass (Panicum virgatum L.) Production in the South-Eastern USA: A Simulation Study,” Biofuels, Bioproducts and Biorefining, Vol. 5, No. 5, 2011, pp. 505-518. doi:10.1002/bbb.288
[19] S. B. McLaughlin and L. A. Kszos, “Development of Switchgrass (Panicum virgatum) as a Bioenergy Feedstock in the United States,” Biomass and Bioenergy, Vol. 28, No. 6, 2005, pp. 515-535. doi:10.1016/j.biombioe.2004.05.006
[20] S. Sokhansanj, A. Kumar and A. F. Turhollow, “Development and Implementation of Integrated Biomass Supply Analysis and Logistics model (IBSAL),” Biomass and Bioenergy, Vol. 30, No. 10, 2006, pp. 838-847. doi:10.1016/j.biombioe.2006.04.004
[21] J. R. Kiniry, J. R. Williams, P. W. Gassman and P. Debaeke, “A General, Process-Oriented Model for Two Competing Plant Species,” Transactions of the ASAE, Vol. 35, No. 3, 1992, pp. 801-810.
[22] J. R. Kiniry, K. A. Cassida, M. A. Hussey, J. P. Muir, W. R. Ocumpaugh, J. C. Read, R. L. Reed, M. A. Sanderson, B. C. Venuto and J. R. Williams, “Switchgrass Simulation by the ALMANAC Model at Diverse Sites in the Southern US,” Biomass and Bioenergy, Vol. 29, No. 6, 2005, pp. 419-425. doi:10.1016/j.biombioe.2005.06.003
[23] J. R. Kiniry, L. Lynd, N. Greene, M. V. Johnson, M. Casler and M. S. Laser, “Biofuels and Water Use: Comparison of Maize and Switchgrass and General Perspectives,” In: J. H. Wright and D. A. Evans, Eds., New Research on Biofuels, Nova Science Publishers, Hauppauge, 2008, pp. 17-30.
[24] S. Sokhansanj and S. Mani, “Modeling of Biomass Supply Logistics,” In: A. V. Bridgewater and B. D. G. Bobcock, Eds., Science in Thermal and Chemical Biomass Conversion, CPL Press, Newbury Perks, 2006, pp. 387-403.
[25] P. Woli and J. O. Paz, “Evaluation of Various Methods for Estimating Global Solar Radiation in the Southeastern USA,” Journal of Applied Meteorology and Climatology, Vol. 51, No. 5, 2012, pp. 972-985. doi:10.1175/JAMC-D-11-0141.1
[26] P. I. R. Adler, M. A. Sanderson, A. A. Boateng, P. J. Weimer and H. J. G. Jung, “Biomass Yield and Biofuel Quality of Switchgrass Harvested in Fall or Spring,” Agronomy Journal, Vol. 98, No. 6, 2006, pp. 1518-1525. doi:10.2134/agronj2005.0351
[27] S. Hwang, F. M. Epplin, B. Lee and R. Huhnke, “A Probabilistic Estimate of the Frequency of Mowing and Baling Days Available in Oklahoma USA for the Harvest of Switchgrass for Use in Biorefineries,” Biomass and Bioenergy, Vol. 33, No. 8, 2009, pp. 1037-1045. doi:10.1016/j.biombioe.2009.03.003
[28] A. Kumar and S. Sokhansanj, “Switchgrass (Panicum vigratum L.) Delivery to a Biorefinery Using Integrated Biomass Supply Analysis and Logistics (IBSAL) Model,” Bioresource Technology, Vol. 98, No. 5, 2007, pp. 1033-1044. doi:10.1016/j.biortech.2006.04.027
[29] S. Sokhansanj, S. Mani, A. Turhollow, A. Kumar, D. Bransby, L. Lynd and M. Laser, “Large-Scale Production, Harvest and Logistics of Switchgrass (Panicum virgatum L.)—Current Technology and Envisioning a Mature Technology,” Biofuels, Bioproducts and Biorefining, Vol. 3, No. 2, 2009, pp. 124-141. doi:10.1002/bbb.129
[30] R. Mitchell, K. P. Vogel and D. R. Uden, “The Feasibility of Switchgrass for Biofuel Production,” Biofuels, Vol. 3, No. 1, 2012, pp. 47-59. doi:10.4155/bfs.11.153
[31] M. R. Schmer, K. P. Vogel, R. B. Mitchell and R. K. Perrin, “Net Energy of Cellulosic Ethanol from Switchgrass,” Proceedings of the National Academy of Sciences of the USA, Vol. 105, No. 2, 2008, pp. 464-469. doi:10.1073/pnas.0704767105
[32] L. Luo, E. van der Voet and G. Huppes, “Energy and Environmental Performance of Bioethanol from Different Lignocelluloses,” International Journal of Chemical Engineering, Vol. 1-12, 2010, pp. 1-12. doi:10.1155/2010/740962
[33] X. Qin, T. Mohan, M. El-Halwagi, G. Cornforth and B. A. McCarl, “Switchgrass as an Alternate Feedstock for Power Generation: An Integrated Environmental, Energy and Economic Life-Cycle Assessment,” Clean Technologies and Environmental Policy, Vol. 8, No. 4, 2006, pp. 233-249. doi:10.1007/s10098-006-0065-4
[34] M. Wang, Y. Wu and A. Elgowainy, “Operating Manual for GREET: Version 1.7,” Argonne National Laboratory, Argonne, 2007.
[35] S. Spatari, Y. Zhang and H. L. Maclean, “Life Cycle Assessment of Switchgrassand Corn Stover-Derived Ethanol-Fueled Automobiles,” Environmental Science and Technology, Vol. 39, No. 24, 2005, pp. 9750-9758. doi:10.1021/es048293
[36] W. L. Stout, “Water-Use Efficiency of Grasses as Affected by Soil, Nitrogen, and Temperature,” Soil Science Society of America Journal, Vol. 56, No. 3, 1992, pp. 897-902. doi:10.2136/sssaj1992.03615995005600030036x
[37] J. A. Stroup, M. A. Sanderson, J. P. Muir, M. J. McFarland and R. L. Reed, “Comparison of Growth and Performance in Upland and Lowland Switchgrass Types to Water and Nitrogen Stress,” Bioresource Technology, Vol. 86, No. 1, 2003, pp. 65-72. doi:10.1016/S0960-8524(02)00102-5
[38] M. A. Sanderson and D. D. Wolf, “Morphological Development of Switchgrass in Diverse Environments,” Agronomy Journal, Vol. 87, No. 5, 1995, pp. 908-915. doi:10.2134/agronj1995.00021962008700050022x
[39] S. D. Wullschleger, M. A. Sanderson, S. B. McLaughlin, D. P. Biradar and A. L. Rayburn, “Photosynthetic Rates and Ploidy Levels among Populations of Switchgrass,” Crop Science, Vol. 36, No. 2, 1996, pp. 306-312. doi:10.2135/cropsci1996.0011183X003600020016x
[40] M. G. Tulbure, M. C. Wimberly, A. Boe and V. N. Owens, “Climatic and Genetic Controls of Yields of Switchgrass, a Model Mioenergy Species,” Agriculture, Ecosystem and Environment, Vol. 146, No. 1, 2012, pp. 121-129. doi:10.1016/j.agee.2011.10.017

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.