The Effect of Catena Position on Greenhouse Gas Emissions from Dambo Located Termite (Odontotermes transvaalensis) Mounds from Central Zimbabwe

Abstract

Methane (CH4), carbon dioxide (CO2) and nitrous oxide (N2)O) are greenhouse gases (GHGs) which cause global warming. Natural sources of GHGs include wetlands and termites. Previous studies have quantified GHG emissions from upland termites and no study has reported GHG emissions from seasonal wetlands (dambo) located termite mounds. The objective of this study was to evaluate the effect of dambo catena position on termite mound distribution and GHG emissions. It was hypothesized that mound density and GHG emissions from Odontotermes transvaalensis mounds, vary with catena position. The evaluated catena positions were margin, mid-slope, lower slope and bottom. Mound density was significantly lower in the bottom when compared to the other catena positions. The mean GHG fluxes were 88 μg m2 hr-1, 0.78 mg m2 hr-1 and 1361 mg m2 hr-1 for N2) O, CH4 and CO2 respectively. Fluxes varied with catena position and were 0.48, 0.72, 1.35 and 0.79 mg m-2 hr-1 for CH4 , and 1173.7, 1440.7, 1798.7 and 922.8 mg m-2 hr-1 for CO2 in the margin, mid-slope, lower slope and the bottom catena position respectively. For N2) O, there were no significant differences between catena positions. It was concluded that dambo located Odontotermes transvaalensis termite mounds are an important source of GHGs, and emissions varied with catena position for CO2 and CH4.

Share and Cite:

G. Nyamadzawo, J. Gotosa, J. Muvengwi, M. Wuta, J. Nyamangara, P. Nyamugafata and J. L. Smith, "The Effect of Catena Position on Greenhouse Gas Emissions from Dambo Located Termite (Odontotermes transvaalensis) Mounds from Central Zimbabwe," Atmospheric and Climate Sciences, Vol. 2 No. 4, 2012, pp. 501-509. doi: 10.4236/acs.2012.24044.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] IPCC, Changes in Atmosphere Constituents and Radiative Forcing. In: S. Solomon, D. Qin, M. Manning, M. Marquis, K. Avery, H. L. Miller and Z. Chen, Eds., Climate Change 2007. The Physical Science Basis: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, New York, 2007, pp. 212-213.
[2] IPCC, “The Science of Climate Change,” In: J. T. Houghton, L. G. M. Filho, B. A. Callander, N. Harris, A. Kattenberg and K. Maskell, Eds., Intergovernmental Panel on Climate Change, Cambridge University Press. Cambridge, 1995.
[3] L. Marani and P. C. Alvaláa, “Methane Emissions from Lakes and Floodplains in Pantanal, Brazil,” Atmospheric Environment, Vol. 41, No. 8, 2006, pp. 1627-1633. doi:10.1016/j.atmosenv.2006.10.046
[4] Environment About, “Residence Times and Global Warming Potential of Greenhouse Gases,” 2011. http://www.environmentabout.com/977/.
[5] J. Le Mer and P. Roger, “Production, Oxidation, Emission and Consumption of Methane by Soils: A Review,” European Journal of Soil Biology, Vol. 37, No. 1, 2001, pp. 25-50. doi:10.1016/S1164-5563(01)01067-6
[6] E. Matthews, “Wetlands,” In: M. A. K. Khalil, Ed., Atmospheric Methane, Its Role in the Global Environment, Spinger-Verlag, Berlin, 2000, pp. 202-233.
[7] B. D. Acres, A. B. Rains, R. B. King , R. M. Lawton and A. J. B. Mitchell, “African Dambos: Their Distribution, Characteristics and Use,” In: M. F. Thomas and A. S. Goudie, Eds., Dambos: Small Channelless Valleys in the Tropics, Zeitschrift für Geomorphologie 52, Borntraeger, 1985, pp. 63-86.
[8] A. Bullock, “Dambo Hydrology in Southern Africa— Review and Reassessment,” Journal of Hydrology, Vol. 134, No. 1-4, 1992, pp. 373-396. doi:10.1016/0022-1694(92)90043-U
[9] R. Boast, “Dambos—A Review,” Progress in Physical Geography, Vol. 14, No. 2, 1990, pp. 153-177. doi:10.1177/030913339001400201
[10] J. R. E. Hindson, “Protection of Dambos by Means of Contour Seepage Furrows,” Ministry of Agriculture, Ndola, 1962.
[11] M. Bell and N. Roberts, “The Political Ecology of Dambo Soil and Water Resources in Zimbabwe,” Transactions of the Institute of British Geographers, Vol. 16, No. 3, 1991, pp. 301-318. doi:10.2307/622950
[12] P. M. Grant, “Fertility of Dambo Soils and The Related Response of Dambo Soils to Fertilisers and Manure,” In: R. Owen, K. Verbeek, J. Jackson and T. Steenhuls, Eds., Dambo Farming in Zimbabwe, University of Zimbabwe Publications, Harare, 1995, pp. 117-126.
[13] R. Mackel, “Dambos and Related Landforms in Africa: An Example for the Ecological Approach to Tropical Geomorphology,” In: M. F. Thomas and A. S. Goudie, Eds., Dambos: Small Channelless Valleys in the Tropics, Zeitschrift für Geomorphologie 52, Borntraeger, 1985, pp. 1-23.
[14] J. R. Whitlow, “Dambos in Zimbabwe: A Review,” In: M. F. Thomas and A. S. Goudie, Eds., Dambos: Small Channelless Valleys in the Tropics, Zeitschrift für Geomorphologie 52, Borntraeger, 1985, pp. 115-146.
[15] B. L. Mitchell, “Report on A Survey of Termites of Zimbabwe. Occasional papers, National Museum,” Rhodesia, Bulletin, Natural Sciences, Vol. 6, No. 5, 1980, pp. 187-323.
[16] R. Mackel, “Dambos: A Study in Morphodynamic Activity on the Plateau Regions of Zambia,” Catena, Vol. 1, 1974, pp. 327-365. doi:10.1016/S0341-8162(73)80018-9
[17] J. M. Dangerfield, T. S. McCarthy and W. N. Ellery, “The Mound Building Termite Macrotermes Michaelseni as an Ecosystem Engineer,” Journal of Tropical Ecology, Vol. 14, No. 4, 1998, pp. 507-520. doi:10.1017/S0266467498000364
[18] G. Soropa, “Effcets of Termite Mounds on the Distribution of Total Micronutrients (Fe, Mn, Zn and Cu) Putting Emphasis on the Termite Mounds Occurance and Distribution along a Catena,” B.Sc. Dissertation, University of Zimbabwe, Harare, 2004.
[19] W. A. Sands, “Termite Distribution in Man-Modified Habitats in West Africa, With Special Reference to Species Segregation in The Genus Trinervitermes (Isoptera, Termitidae, Nasutitermitinae),” Journal of Animal Ecology, Vol. 34, No. 3, 1965, pp. 557-571. doi:10.2307/2449
[20] G. Velu, K. Ramasamy, K. Kumar, N. Sivaramaiah and V. R. M. Ramanjaneya, “Green House Gas Emissions from Termite Ecosystem (A Review),” African Journal of Environmental Science and Technology, Vol. 5, No. 2, 2011, pp. 56-64.
[21] C. Brümmer, H. Papen, R. Wassmann and N. Brüggemann, “Fluxes of CH4 and CO2 From Soil and Termite Mounds in South Sudanian Savanna of Burkina Faso (West Africa),” Global Biogeochemical Cycles, Vol. 23, No. GB1001, 2009, 13 pp. doi:10.1029/2008GB003237
[22] M. A. K. Khalil, R. A. Rasmussen, J. R. J. French and J. A. Holt, “Influence of Termites on Atmospheric Trace Gases CH4, CO2, CH3Cl, N2O, CO, H2 and Light Hydrocarbon,” Journal of Geophysical Research, Vol. 95, No. D4, 1990, pp. 3619-3634. doi:10.1029/JD095iD04p03619
[23] S. Konaté, X. Le Roux, B. Verdier and M. Lepage, “Effect of Underground Fungus-Growing Termites on Carbon Dioxide Emission at the Point and Landscape-Scales in an African Savanna,” Functional Ecology, Vol. 17, No. 3, 2003, pp. 305-314. doi:10.1046/j.1365-2435.2003.00727.x
[24] S. C. Taylor, P. R. Zimmerman, C. Cumberbatch, J. P. Greenberg, C. Westberg and J. P. E. Darlington, “Measurements and Interpretation of δ13C of Methane from Termites, Rice Paddies and Wetlands from Kenya,” Global Biogeochemical Cycles, Vol. 2, No. 4, 1988, pp. 341-355. doi:10.1029/GB002i004p00341
[25] W. Seiler, R. Conrad and D. Scharffe, “Field Studies of Methane Emission from Termite Nests into the Atmosphere and Measurement of Methane Uptake by Tropical Soils,” Journal of Atmospheric Chemistry, Vol. 1, No. 2, 1984, pp. 171-186. doi:10.1007/BF00053839
[26] P. R. Zimmerman, J. P. Greenberg, S. O. Wandiga and P. J. Crutzen, “Termite, a Potentially Large Source of Atmospheric Methane,” Science, Vol. 218, No. 4572, 1982, pp. 563-565. doi:10.1126/science.218.4572.563
[27] G. Schuurman and J. M. Dangerfield, “Dispersion and Abundance of Macrotermes Michaelseni Colonies: A Limited Role for Intraspecific Competition,” Journal of Tropical Ecology, Vol. 13, No. 1, 1997, pp. 39-49. doi:10.1017/S0266467400010233
[28] C. Brümmer, H. Papen, R. Wassmann and N. Brüggemann, “Termite Mounds as Hot Spots of Nitrous Oxide Emissions in South-Sudanian Savanna of Burkina Faso (West Africa),” Geophysical Research Letters, Vol. 36, No. 9, 2009, pp. 15-18. doi:10.1029/2009GL037351
[29] V. Vincent and R. G. Thomas, “An Agro-Ecological Survey of Southern Rhodesia: Part I Agro-Ecological Survey. Salisbury,” Government Printers, Rhodesia, 1961.
[30] D. J. Brown, G. Nyamadzawo and P. E. Denison, “Spatially Distributed Methane Flux Measurements for a Tropical Dambo Wetland Landscape in Uganda,” American Geophysical Union, California, 2008. http://adsabs.harvard.edu/abs/2008AGUFM.B33B0414B.
[31] M. A. K. Khalil and R. A. Rasmussen, “Flux Measurements and Sampling Strategies: Applications to Methane Emissions from Rice Fields,” Journal of Geophysical Research, Vol. 103, No. D19, 1998, pp. 25211-25218.
[32] GENSTAT, “GENSTAT Statistical Package,” 8th Edition, VSN International, Hertfordshire, 2003.
[33] L. P. Wilding, “Spatial Variability: Its Documentation, Accommodation, and Implication to Soil Surveys,” In: D. R. Nielsen and J. Bouman, Eds., Soil Spatial Variability, Wageningen, The Netherlands, 1985, pp. 166-194.
[34] C. J. von der Heyden, “The Hydrology and Hydrogeology of Dambos: A Review,” Progress in Physical Geography, Vol. 28, No. 4, 2004, pp. 544-564. doi:10.1191/0309133304pp424oa
[35] D. K. Ngugi, R. Ji and A. Brune, “Nitrogen Mineralization, Denitrification, and Nitrate Ammonification by Soil-Feeding Termites: A 15N-based Approach,” Biogeochemistry, Vol. 103, No. 1-3, 2011, pp. 355-369. doi:10.1007/s10533-010-9478-6
[36] J. M. Rattray, R. M. M. Cormack and R. R. Staples, “The Vlei Areas of Southern Rhodesia and Their Uses,” Rhodesian Agricultural Journal, Vol. 50, No. 6, 1953, pp. 465-483.
[37] J. J. Mott, J. Williams, M. H. Andrew and A. N. Gillison, Australian Savanna Ecosystems. In: J. C. Tothill and J. J. Mott, Eds., Ecology and Management of the World’s Savannas, Australian Academy of Sciences, Canberra, 1985, pp. 56-82.
[38] M. Bell, R. Faulkner, P. Hotchkiss, R. Lambert, N. Roberts and A. Windram, “The Use of Dambos in Rural Development with Reference to Zimbabwe,” ODA Project, London, 1987.
[39] R. D. Bowden, P. A. Stuedler, J. M. Mellillo and J. D. Abber, “Annual Nitrous Oxide Fluxes from Temperate Forest Soils in the North Easstern United States,” Journal of Geophysical Research, Vol. 95, No. D9, 1990, pp. 13997-14005. doi:10.1029/JD095iD09p13997
[40] F. Mapanda, J. Mupini, M. Wuta, J. Nyamangara and R. M. Rees, “A Cross-Ecosystem Assessment of the Effects of Land Cover and Land Use on Soil Emission of Selected Greenhouse Gases and Related Soil Properties in Zimbabwe,” European Journal of Soil Science, Vol. 61, No. 5, 2010, pp. 721-733. doi:10.1111/j.1365-2389.2010.01266.x
[41] R. M. Rees, M. Wuta, P. A. Furley and C. S. Li, “Nitrous Oxide Fluxes from Savanna (Miombo) Woodlands in Zimbabwe,” Journal of Biogeography, Vol. 33, No. 3, 2006, pp. 424-437. doi:10.1111/j.1365-2699.2005.01423.x
[42] M. Scholes and M. O. Andreae, “Biogenic and Pyrogenic Emissions from Africa and Their Impact on the Global Atmosphere,” AMBIO, Vol. 29, No. 1, 2000, pp. 23-29.
[43] B. B. Otter and M. C. Scholes, “Methane sources and Sinks in Periodically Flooded South African Savanna,” Global Biogeochemical Cycles, Vol. 14, No. 1, 2000, pp. 97-111. doi:10.1029/1999GB900068
[44] C. A. Cambardella, T. B. Moorman, J. M. Novak, T. B. Parkin, D. L. Karlen, R. F. Turco and A. E. Konopka, “Field Scale Variability of Soil Properties in Central Iowa soils,” Soil Science Society of America Journal, Vol. 58, No. 5, 1994, pp. 1501-1511. doi:10.2136/sssaj1994.03615995005800050033x
[45] P. S. C. Rao and R. J. Wagenet, “Spatial Variability of Pesticides in Field Soils: Methods for Data Analysis and Consequences,” Weed Science, Vol. 33, No. 5, 1985, pp. 18-24.
[46] P. Eggleton, R. Homathevi, D. T. Jones, D. Mac, J. Fonald, D. Jeeva, D. E. Bignell and M. Maryati, “Termite Assemblages, Forest Disturbance and Greenhouse Gas Fluxes in Sabah, East Malysia,” Philosophical Transactions of the Royal Society, Series B, Vol. 354, No. 1391, 1999, pp. 1791-1802. doi:10.1098/rstb.1999.0521
[47] A. Sugimoto, D. E. Bignell and J. A. MacDonald, “Global Impact of Termites on the Carbon Cycle and Atmospheric Trace Gases,” In: T. Abe, D. E. Bignell and M. Higashi, Eds., Termites: Evolution, Sociality, Symbiosis, Ecology, Kluwer Academic Publishers, Dordrecht, 2000, pp. 409-435.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.