Cadmium Toxicity in Plants and Role of Mineral Nutrients in Its Alleviation


Cadmium (Cd) is a toxic heavy metal that enters the environment through various anthropogenic sources, and inhibits plant growth and development. Cadmium toxicity may result from disturbance in plant metabolism as a consequence of disturbance in the uptake and translocation of mineral nutrients. Plant nutrients and Cd compete for the same transporters and, therefore, presence of Cd results in mineral nutrients deficiency. The optimization of mineral nutrients under Cd stress could reduce Cd toxicity by greater availability at the transport site resulting in reduced accumulation of Cd, and could also alleviate Cd-induced toxic effects by enhancing biochemical reactions and physiological processes in plants. In the present review the role of plant macro, micro and beneficial elements in alleviating Cd stress in crop plants is discussed.

Share and Cite:

R. Nazar, N. Iqbal, A. Masood, M. Khan, S. Syeed and N. Khan, "Cadmium Toxicity in Plants and Role of Mineral Nutrients in Its Alleviation," American Journal of Plant Sciences, Vol. 3 No. 10, 2012, pp. 1476-1489. doi: 10.4236/ajps.2012.310178.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] L. S. di Toppi and R. Gabbrielli, “Response to Cadmium in Higher Plants,” Environmental and Experimental Botany, Vol. 41, No. 2, 1999, pp. 105-130. doi:10.1016/S0098-8472(98)00058-6
[2] M. Vahter, M. Berglund, S. Slorach, L. Friberg, M. Sari?, X. Q. Zheng and M. Fujita, “Methods for Integrated Exposure Monitoring of Lead and Cadmium,” Environmental Research, Vol. 56, No. 1, 1991, pp. 78-89. doi:10.1016/S0013-9351(05)80111-2
[3] A. Kabata-Pendias and H. Pendias, “Trace Elements in Soils and Plants,” 3rd Edition, CRC Press, Boca Raton, 2001.
[4] S. Muramoto and I. Aoyama, “Effects of Fertilizers on the Vicissitude of Cadmium in Rice Plants,” Journal of Environmental Science and Health, Vol. 25, No. 6, 1990, pp. 629-636.
[5] N. A. Khan, Samiullah, S. Singh and R. Nazar, “Activities of Antioxidative Enzymes, Sulphur Assimilation, Photosynthetic Activity and Growth of Wheat (Triticum aestivum) Cultivars Differing in Yield Potential under Cadmium Stress,” Journal of Agronomy and Crop Science, Vol. 193, No. 6, 2007, pp. 435-444. doi:10.1111/j.1439-037X.2007.00272.x
[6] N. A. Khan, N. A. Anjum, R. Nazar and N. Iqbal, “Increased Activity of ATP-Sulfurylase and Increased Contents of Cysteine and Glutathione Reduce High Cadmium-induced Oxidative Stress in Mustard Cultivar with High Photosynthetic Potential,” Russian Journal of Plant Physiology, Vol. 56, No. 5, 2009, pp. 670-677. doi:10.1134/S1021443709050136
[7] J. Feng, Q. Shi, X. Wang, M. Wei, F. Yang and H. Xu, “Silicon Supplementation Ameliorated the Inhibition of Photosynthesis and Nitrate Metabolism by Cadmium (Cd) Toxicity in Cucumis sativus L.,” Scientia Horticulturae, Vol. 123, No. 4, 2010, pp. 521-530. doi:10.1016/j.scienta.2009.10.013
[8] M. A. Hossain, M. Hasanuzzaman and M. Fujita, “Up-Regulation of Antioxidant and Glyoxalase Systems by Exogenous Glycinebetaine and Proline in Mung Bean Confer Tolerance to Cadmium Stress,” Physiology and Molecular Biology of Plants, Vol. 16, No. 3, 2010, pp. 259-272. doi:10.1007/s12298-010-0028-4
[9] M. Mobin and N. A. Khan, “Photosynthetic Activity, Pigment Composition and Antioxidative Response of Two Mustard (Brassica juncea) Cultivars Differing in Photosynthetic Capacity Subjected to Cadmium Stress,” Journal of Plant Physiology, Vol. 164, No. 5, 2007, pp. 601-610. doi:10.1016/j.jplph.2006.03.003
[10] G. Shi, C. Liu, Q. Cai, Q. Liu and C. Hou, “Cadmium Accumulation and Tolerance of Two Safflower Cultivars in Relation to Photosynthesis and Antioxidantive Enzymes,” Bulletin of Environmental and Contamination Toxicology, Vol. 85, No. 3, 2010, pp. 256-263. doi:10.1007/s00128-010-0067-0
[11] S. Brahim, D. Joke, C. Ann, N. Jean-Paul, T. Marjo, T. Arja, K. Sirpa, V. B. Frank, S. Karen and V. Jaco, “Leaf Proteome Responses of Arabidopsis thaliana Exposed to Mild Cadmium Stress,” Journal of Plant Physiology, Vol. 167, No. 4, 2010, pp. 247-254. doi:10.1016/j.jplph.2009.09.015
[12] N. Sarwar, S. Saifullah, S. Malhi, M. H. Zia, A. Naeem, S. Bibi and G. Farida, “Role of Mineral Nutrition in Minimizing Cadmium Accumulation by Plants,” Journal of the Science of Food and Agriculture, Vol. 90, No. 6, 2010, pp. 925-937.
[13] L. E. Williams, J. K. Pittman and J. L. Hall, “Emerging Mechanisms for Heavy Metal Transport in Plants,” Biochimicia Biophysica Acta, Vol. 1465, No. 1-2, 2000, pp. 104-126. doi:10.1016/S0005-2736(00)00133-4
[14] C. A. F. De Sousa and L. Sodek, “Alanine Metabolism and Alanine Aminotransferase Activity in Soybean (Glycine max) during Hypoxia of the Root System and Subsequent Return to Normoxia,” Environmenatl and Experimental Botany, Vol. 50, No. 1, 2003, pp. 1-8. doi:10.1016/S0098-8472(02)00108-9
[15] H. Obata, N. Inoue and M. Umebayashi, “Effect of Cd on Plasma Membrane ATPase From Plant Roots Differing in Tolerance to Cd,” Soil Science and Plant Nutrition, Vol. 42, No. 2, 1996, pp. 361-366.
[16] S. A Mouron, C. A. Grillo, F. N. Dulout and C. D. Golijow, “A Comparative Investigation of DNA Strand Breaks, Sister Chromatid Exchanges and K-ras Gene Mutations Induced by Cadmium Salts in Cultured Human Cells,” Mutation Research, Vol. 568, No. 1, 2004, pp. 221-231. doi:10.1016/j.mrfmmm.2004.08.012
[17] S. ünyayar, A. G. De?er, A. ?elik, F. ?. ?eki? and S. ?evik, “Cadmium-Induced Antioxidant Status and Sister-chromatid Exchanges in Vicia faba L.,” Turkish Journal of Biology, Vol. 34, No. 4, 2010, pp. 413-422.
[18] D. Ueno, E. Koyama, I. Kono, T. Ando, M. Yano and J. F. Ma, “Identi?cation of a Novel Major Quantitative Trait Locus Controlling Distribution of Cd between Roots and Shoots in Rice,” Plant Cell and Physiology, Vol. 50, No. 12, 2009, pp. 2223-2233. doi:10.1093/pcp/pcp160
[19] R. Blanvillain, J. H. Kim, S. Wu, A. Lima and D. W. Ow, “Oxidative Stress 3 Is a Chromatin-Associated Factor Involved in Tolerance to Heavy Metals and Oxidative Stress,” The Plant Journal, Vol. 57, No. 3, 2009, pp. 654-665. doi:10.1111/j.1365-313X.2008.03717.x
[20] N. Verbruggen, C. Hermans and H. Schat, “Molecular Mechanisms of Metal Hyperaccumulation in Plants,” New Phytologist, Vol. 181, No. 4, 2009, pp. 759-776.
[21] V. Korenkov, K. Hirschi, J. D. Crutch Weld and G. J. Wagner, “Enhancing Tonoplast Cd/H Antiport Activity Increases Cd, Zn, and Mn Tolerance, and Impacts Root/ Shoot Cd Partitioning in Nicotiana tabacum L.,” Planta, Vol. 226, No. 6, 2007, pp. 1379-1387. doi:10.1007/s00425-007-0577-0
[22] P. Hinsinger, C. Plassard and B. Jaillard, “Rhizosphere: A New Frontier for Soil Biogeochemistry,” Journal Geochemical Exploration, Vol. 88, No. 1-3, pp. 210-213. doi:10.1016/j.gexplo.2005.08.041
[23] V. Pantazis, I. Kalavrouziotis and I. Deligiannakis, “Cu-Zn Accumulation on Soil Plant System Irrigated with Wastewater,” Proceedings in IWA Facing Sludge Diversities: Challenges, Risks and Opportunities, Antalya, 28-30 March 2007.
[24] M. Mench and E. Martin, “Mobilization of Cadmium and other Metals from Two Soils by Root Exudates of Zea mays L, Nicotiana tabacum L and Nicotiana rustica L.,” Plant and Soil Vol. 132, No. 1991, pp. 187–196.
[25] H. Marschner, “Mineral Nutrition of Higher Plants,” 2nd Edition, Academic Press, London, 1995, pp. 405-435.
[26] A. Llamas, C. I. Ullrich and A. Sanz, “Cd2+ Effects on Transmembrane Electrical Potential Difference, Respiration and Membrane Permeability of Rice (Oryza sativa L.) Roots,” Plant and Soil, Vol. 219, No. 1-2, 2000, pp. 21-28. doi:10.1023/A:1004753521646
[27] L. Perfus-Barbeoch, N. Leonhardt, A. Vavasseur, and C. Forestier, “Heavy Metal Toxicity: Cadmium Permeates through Calcium Channels and Disturbs the Plant Water Status,” Plant Journal, Vol. 32, No. 4, 2002, pp. 539-548. doi:10.1046/j.1365-313X.2002.01442.x
[28] A. G?thberg, M. Greger, K. Holm and B. E. Bengtsson, “Influence of Nutrient Levels on Uptake and Effects of Mercury, Cadmium, and Lead in Water Spinach,” Journal of Environmental Quality, Vol. 33, No. 4, 2004, pp. 1247-1255. doi:10.2134/jeq2004.1247
[29] J. Y. Sun and Z. G. Shen, “Effects of Cd Stress on Photosynthetic Characteristics and Nutrient Uptake of Cabbages with Different Cd-tolerance,” Chinese Journal of Applied Ecology, Vol. 18, No. 11, 2007, pp. 2605-2610.
[30] C. C. Nwugo and A. J. Huerta, “Silicon-Induced Cadmium Resistance in Rice (Oryza sativa),” Journal of Plant Nutrition and Soil Science, Vol. 171, No. 6, 2008, pp. 841-848. doi:10.1002/jpln.200800082
[31] H. Obata and M. Umebayashi, “Effects of Cadmium on Mineral Nutrient Concentrations in Plants Differing in Tolerance for Cadmium,” Journal of Plant Nutrition, Vol. 20, No. 1, 1997, pp. 97-105. doi:10.1080/01904169709365236
[32] M. Gussarson and P. Jensen, “Effects of Copper and Cadmium on Uptake and Leakage of K+ in Birch (Betula pendula) Roots,” Tree Physiology, Vol. 11, No. 3, 1992, pp. 305-313.
[33] M. Rezvani, F. Zaefarian, M. Miransari and G. A. Nematzadeh, “Uptake and Translocation of Cadmium and Nutrients by Aeluropus littoralis,” Archives of Agronomy and Soil Science, 2011. doi:10.1080/03650340.2011.591385
[34] R. Aina, M. Labra, P. Fumagalli, C. Vannini, M. Marsoni, U. Cucchi, M. Bracale, S. Sgorbati and S. Citterio, “Thiol-Peptide Level and Proteomic Changes in Response to Cadmium Toxicity in Oryza sativa L. Roots,” Environmental and Experimental Botany, Vol. 59, No. 3, 2007, pp. 381-392. doi:10.1016/j.envexpbot.2006.04.010
[35] J. F. Gon?alves, F. G. Antes, J. Maldanera, L. B. Pereira, L. A. Tabaldi, R. Rauber, L. V. Rossato, D. A. Bisognin, V. L. Dressler, é. M. de M. Flores and F. T. Nicoloso, “Cadmium and Mineral Nutrient Accumulation in Potato Plantlets Grown under Cadmium Stress in Two Different Experimental Culture Conditions,” Plant Physiology and Biochemistry, Vol. 47, No. 10, 2009, pp. 814-821. doi:10.1016/j.plaphy.2009.04.002
[36] M. L. Guerinot, “The ZIP Family of Metal Transporters,” Biochimica Biophysica Acta, Vol. 1465, No. 1-2, 2000, pp. 190-198. doi:10.1016/S0005-2736(00)00138-3
[37] J. Dong, F. Wu and G. Zhang, “Influence of Cadmium on Antioxidant Capacity and Four Microelement Concentrations in Tomato Seedlings (Lycopersicon esculentum),” Chemosphere, Vol. 64, No. 10, 2006, pp. 1659-1666. doi:10.1016/j.chemosphere.2006.01.030
[38] F. Van Assche and H. Clijsters, “Effects of Metals on Enzyme Activity in Plants,” Plant Cell Environment, Vol. 13, No. 3, 1990, pp. 195-206. doi:10.1111/j.1365-3040.1990.tb01304.x
[39] T. Yoshihara, H. Hodoshima, Y. Miyano, K. Shoji, H. Shimada and F. Goto, “Cadmium Inducible Fe Deficiency Responses Observed from Macro and Molecular Views in Tobacco Plants,” Plant Cell Report, Vol. 25, No. 4, 2006, pp. 365-373. doi:10.1007/s00299-005-0092-3
[40] M. Ebadi, M. P. Leuschen, H. El Refaey, F. M. Hamada, and P. Rojas, “The Antioxidant Properties of Zinc and Metallothionein,” Neurochemistry International, Vol. 29, No. 2, 1996, pp. 159-166. doi:10.1016/0197-0186(95)00116-6
[41] H. Wu, C. Chen, J. Du, H. Liu, Y. Cui, Y. Zhang, Y. He, J. Li, Z. Feng, Y. Wang, C. Chu and H. Q. Ling, “Co-Overexpression FIT with AtbHLH38 or AtbHLH39 in Arabidopsis Enhanced Cadmium Tolerance via Increased Cadmium Sequestration in Roots and Improved Iron Homeostasis of Shoots,” Plant Physiology, Vol. 158, No. 2, 2011, pp. 790-800. doi:10.1104/pp.111.190983
[42] K. Peng, C. Luo, W. You, Ch. Lian, X. Li and Z. Shen, “Manganese Uptake and Interactions with Cadmium in the Hyperaccumulator Phytolacca americana L.,” Journal of Hazardous Material, Vol. 154, No. 1-3, 2008, pp. 674-681. doi:10.1016/j.jhazmat.2007.10.080
[43] L. Cai and G. Cherian, “Zinc-Metallothionein Protects from DNA Damage Induced by Radiation Better than Glutathione and Cu- or Cd- Metallothioneins,” Toxicology Letters, Vol. 136, No. 3, 2003, pp. 193-198. doi:10.1016/S0378-4274(02)00359-4
[44] U. Roth, E. V. Roepenack-Lahaye and S. Clemens, “Proteome Changes in Arabidopsis thaliana Roots upon Eexposure to Cd2+,” Journal of Experimental Botany, Vol. 57, No. 15, 2006, pp. 4003-4013. doi:10.1093/jxb/erl170
[45] A. Papoyan and L. V. Kochian, “Identi?cation of Thlaspi caerulescens Genes That May Be Involved in Heavy Metal Hyperaccumulation and Tolerance. Characterization of a Novel Heavy Metal Transporting ATPase,” Plant Physiology Vol. 136, No. 3, 2004, pp. 3814-3823. doi:10.1104/pp.104.044503
[46] D. E. Salt, R. C. Prince, I. J. Pickering and I. Raskin, “Mechanisms of Cadmium Mobility and Accumulation in Indian Mustard,” Plant Physiology, Vol. 109, No. 4, 1995, pp. 1427-1433.
[47] M. P. Benavides, S. M. Gallego and M. L. Tomaro, “Cadmium Toxicity in Plants,” Brazilian Journal of Plant Physiology, Vol. 17, No. 1, 2005, pp. 21-34. doi:10.1590/S1677-04202005000100003
[48] A. Polle and A. Schutzendubel, “Heavy Metal Signaling in Plants: Linking Cellular and Organismic Responses,” In: H. Hirt and K. Shinozaki, Eds., Plant Responses to Abiotic Stress, Springer-Verlag, Berlin, pp. 187-215.
[49] Y. Nevo and N. Nelson, “The NRAMP Family of Metal-Ion Transporters,” Biochimicia Biophyscia Acta, Vol. 1763, No. 7, 2006, pp. 609-620. doi:10.1016/j.bbamcr.2006.05.007
[50] C. K. E. Wong and C. S. Cobbett, “HMA P-Type AT-Pases Are the Major Mechanism for Root-to-Shoot Cd Translocation in Arabidopsis thaliana,” New Phytologist Vol. 181, No. 1, 2009, pp. 71-78. doi:10.1111/j.1469-8137.2008.02638.x
[51] U. Kr?mer, I. N. Talke and M. Hanikenne, “Transition Metal Transport,” FEBS Letter, Vol. 581, No. 12, 2007, pp. 2263-2272. doi:10.1016/j.febslet.2007.04.010
[52] C. Bernard, N. Roosens, P. Czernic, M. Lebrun and N. Verbruggen, “A Novel CPx-ATPase from the Cadmium Hyperaccumulator Thlaspi caerulescens,” FEBS Letter, Vol. 569, No. 1-3, 2004, pp. 140-148. doi:10.1016/j.febslet.2004.05.036
[53] Y. O. Korshunova, D. Eide, W. G. Clark, M. L. Guerinot, and H. B. Pakrasi, “The IRT1 Protein from Arabidopsis thaliana Is a Metal Transporter with a Broad Substrate Range,” Plant Molecular Biology, Vol. 40, No. 1, 1999, pp. 37-44. doi:10.1023/A:1026438615520
[54] G. Vert, N. Grotz, F. Dédaldéchamp, F. Gaymard, M. L. Guerinot, J. F. Briat and C. Curie, “IRT1, an Arabidopsis Transporter Essential for Iron Uptake from the Soil and for Plant Growth,” The Plant Cell, Vol. 14, No. 6, 2002, pp. 1223-1233. doi:10.1105/tpc.001388
[55] B. Montanini, D. Blaudez, S. Jeandroz, D. Sanders and M. Chalot, “Phylogenetic and Functional Analysis of the Cation Diffusion Facilitator (CDF) Family: Improved Signature and Prediction of Substrate Specificity,” BMC Genomics, Vol. 107, No. 8, 2007, pp. 23-107.
[56] S. Thomine, F. Lelievre, E. Debarbieux, J. I. Schroeder and H. Barbier-Brygoo, “AtNRAMP3, a Multispecific Vacuolar Metal Transporter Involved in Plant Rresponses to Iron Deficiency,” The Plant Journal, Vol. 34, No. 5, 2003, pp. 685-695. doi:10.1046/j.1365-313X.2003.01760.x
[57] D. Pankovic, M. Plesnicar, I. Arsenijeevic-Maksimovic, N. Petrovic, Z. Sakac and R. Kastori, “Effects of Nitrogen Nutrition on Photosynthesis in Cd-Treated Sunflower Plants” Annals of Botany, Vol. 86, No. 4, 2000, pp. 841-847. doi:10.1006/anbo.2000.1250
[58] M. A. Jalloh, J. Chen, F. Zhen and G. Zhang, “Effect of Different N Fertilizer Forms on Antioxidant Capacity and Grain Yield of Rice Growing under Cd Stress,” Journal of Hazardous Material, Vol. 162, No. 2-3, 2009, pp. 1081-1085. doi:10.1016/j.jhazmat.2008.05.146
[59] S. S. Sharma and K. J. Dietz, “The Significance of Amino Acids and Amino Acid-derived Molecules in Plant Responses and Adaptation to Heavy Metal Stress,” Journal of Experimental Botany, Vol. 57, No. 4, 2006, pp. 711-726. doi:10.1093/jxb/erj073
[60] E. Zhu, D. Liu, J. G. Li, T. Q. Li, X. E. Yang, Z. L. He and P. J. Stoffella, “Effect of Nitrogen Fertilizer on Growth and Cadmium Accumulation in Sedum alfredii Hance,” Journal of Plant Nutrition, Vol. 34, 2011, pp. 115-126.
[61] T. Lin, X. Zhu, F. Zhang and X. Wan, “The Detoxification Effect of Cadmium Stress in Populus yunnanensis,” Research Journal of Botany, Vol. 4, No. 1, 2011, pp. 13-19.
[62] H. Wang, S. C. Zhao, R. L. Liu, W. Zhou and J. Y. Jin, “Changes of Photosynthetic Activities of Maize (Zea mays L.) Seedlings in Response to Cadmium Stress,” Photosynthetica, Vol. 47, No. 2, 2009, pp. 277-283. doi:10.1007/s11099-009-0043-2
[63] W. Shen, K. Nada and S. Tachibana, “Involvement of Polyamines in the Chilling Tolerance of Cucumber Cultivars,” Plant Physiology, Vol. 124, No. 1, 2000, pp. 431-439.
[64] Z. Q. Zhao, Y. G. Zhu, H. Y. Li, S. E. Smith and F. A. Smith, “Effects of Forms and Rates of Potassium Fertilizers on Cadmium Uptake by Two Cultivars of Spring Wheat (Triticum aestivum L.),” Environmental International, Vol. 29, No. 7, 2004, pp. 973-978. doi:10.1016/S0160-4120(03)00081-3
[65] S. Umar, I. Diva, N. A. Anjum and M. Iqbal, “Research Findings II: Potassium Nutrition Reduces Cadmium Accumulation and Oxidative Burst in Mustard (Brassica campestris L.),” e-ifc 2008, No. 16.
[66] A. L. Wangeline, J. L. Burkhead, K. L. Hale, S. D. Lindblom, N. Terry, M. Pilon and E. A. H. Pilon-Smits, “Over-Expression of ATP Sulfurylase in Indian Mustard: Effects on Tolerance and Accumulation of Twelve Metals,” Journal of Environmental Quality, Vol. 33, No. 1, 2004, pp. 54-60. doi:10.2134/jeq2004.0054
[67] J. R. Howarth, J. R. Domínguez-Solís, G. Gutíerrez-Alcalá, J. L. Wray, L. C. Romero and C. Gotor, “The Serine Acetyltransferase Gene Family in Arabidopsis thaliana and the Regulation of Its Expression by Cadmium,” Plant Molecular Biology, Vol. 51, No. 4, 2003, pp. 589-598. doi:10.1023/A:1022349623951
[68] N. A. Anjum, S. Umar, A. Ahmad, M. Iqbal and N. A. Khan, “Sulphur Protects Mustard (Brassica campestris L.) from Cadmium Toxicity by Improving Leaf Ascorbate and Glutathione,” Plant Growth Regulation, Vol. 54, No. 3, 2008, pp. 271-279. doi:10.1007/s10725-007-9251-6
[69] F. F. Nocito, C. Lancilli, B. Crema, P. Fourcroy, J.-C. Davidian and G. A. Sacchi, “Heavy Metal Stress and Sulfate Uptake in Maize Roots,” Plant Physiology, Vol. 141, No. 3, 2006, pp. 1138-1148. doi:10.1104/pp.105.076240
[70] Z. C. Zhang, B. X. Chen and B. S. Qiu, “Phytochelatin Synthesis Plays a Similar Role in Shoots of the Cadmium Hyperaccumulator Sedum alfredii as in Non-resistant Plants,” Plant Cell Environment, Vol. 33, No. 8, 2010, pp. 1248-1255. doi:10.1111/j.1365-3040.2010.02144.x
[71] S. Astolfi, S. Zuchi and C. Passera, “Role of Sulphur Availability on Cadmium-induced Changes of Nitrogen and Sulphur Metabolism in Maize (Zea mays L.) Leaves,” Journal of Plant Physiology, Vol. 161, No. 7, 2004, pp. 795-802. doi:10.1016/j.jplph.2003.11.005
[72] S. S. Gill and N. Tuteja, “Cadmium Stress Tolerance in Crop Plants. Probing the Role of Sulfur,” Plant Signaling and Behavior, Vol. 6, No. 2, 2011, pp. 215-222. doi:10.4161/psb.6.2.14880
[73] Y. Cai, F. Cao, W. Cheng, G. Zhang and F. Wu, “Modulation of Exogenous Glutath1ione in Phytochelatins and Photosynthetic Performance Against Cd Stress in the Two Rice Genotypes Differing in Cd Tolerance,” Biological Trace Element Research, Vol. 143, No. 2, 2010, pp. 1159-1173. doi:10.1007/s12011-010-8929-1
[74] A. Masood, N. Iqbal and N. A. Khan, “Role of Ethylene in Alleviation of Cadmium-induced Photosynthetic Capacity Inhibition by Sulfur in Mustard,” Plant Cell Environment Vol. 35, No. 3, 2012, pp. 524-533. doi:10.1111/j.1365-3040.2011.02432.x
[75] M. T. Nelson, “Interactions of Divalent Cations with Single Calcium Channels from Rat Brain Synaptosomes,” Journal of General Physiology, Vol. 87, No. 2, 1986, pp. 201-222. doi:10.1085/jgp.87.2.201
[76] A. Rivetta, N. Negrini and M. Cocucci, “Involvement of Ca2+ Calmodulin in Cd2+ Toxicity during the Early Phases of Radish (Raphanus sativus L.) Seed Germination,” Plant Cell Environment, Vol. 20, No. 5, 1997, pp. 600-608. doi:10.1111/j.1365-3040.1997.00072.x
[77] N. Suzuki, “Alleviation by Calcium of Cd-Induced Root Growth Inhibition in Arabidopsis Seedling,” Plant Biotechnology, Vol. 22, 2005, pp. 19-25.
[78] Q. C. Wang and H. Song, “Calcium Protects Trifolium repens L. Seedlings against Cadmium Stress,” Plant Cell Reports, Vol. 28, No. 9, 2009, pp. 1341-1349. doi:10.1007/s00299-009-0734-y
[79] H. E. Zhenyan, L. I. Jiangchuan, H. Zhang and M. I. Ma, “Different Effects of Calcium and Lanthanum on the Expression of Phytochelatin Synthase Gene and Cadmium Absorption in Lactuca sativa,” Plant Science, Vol. 168, No. 2, 2005, pp. 309-318. doi:10.1016/j.plantsci.2004.07.001
[80] T. S. Chou, Y. Y. Chao, W. D. Huang, C. Y. Hong and C. H. Kao, “Effect of Magnesium Deficiency on Antioxidant Status and Cadmium Toxicity in Rice Seedlings,” Journal of Plant Physiology, Vol. 168, No. 10, 2011, pp. 1021-1030. doi:10.1016/j.jplph.2010.12.004
[81] M. D. A. Kashem and S. Kawai, “Alleviation of Cadmium Phytotoxicity by Magnesium in Japanese Mustard Spinach,” Soil Science and Plant Nutrition, Vol. 53, No. 3, 2007, pp. 246-251. doi:10.1111/j.1747-0765.2007.00129.x
[82] R. A. Street, M. G. Kulkarni, W. A. Stirk, C. Southway, and J. Van Staden, “Effect of Cadmium on Growth and Micronutrient Distribution in Wild Garlic (Tulbaghia violacea),” South African Journal of Botany, Vol. 76, No. 2, 2010, pp. 332-336. doi:10.1016/j.sajb.2009.12.006
[83] E. Nada, B. A. Ferjani, R. Ali, B. R. B. M. Imed and B. Makki, “Cadmium-Induced Growth Inhibition and Alteration of Biochemical Parameters in Almond Seedlings Grown in Solution Culture,” Acta Physilogiae Plantarum, Vol. 29, No. 2, 2007, pp. 57-62. doi:10.1007/s11738-006-0009-y
[84] M. I. Qureshi, G. M. D’Amici, M. Fagioni, S. Rinalducci and L. Zolla, “Iron Stabilizes Thylakoid Protein-Pigment Complexes in Indian Mustard during Cd-Phytoremediation as Revealed by BN-SDS-PAGE and ESI-MS/MS,” Journal of Plant Physiology, Vol. 167, No. 10, 2010, pp. 761-770. doi:10.1016/j.jplph.2010.01.017
[85] P. Pa?ove-Balang, A. Kisová, J. Pavlovkin and I. Mistrík, “Effect of Manganese on Cadmium Toxicity in Maize Seedlings,” Plant Soil and Environment, Vol. 52, No. 4, 2006, pp. 143-149.
[86] P. Zornoza, B. Sánchez-Pardo and R. R. O. Carpena, “Interaction and Accumulation of Manganese and Cadmium in the Manganese Accumulator Lupinus albus,” Journal of Plant Physiology, Vol. 167, No. 13, 2010, pp. 1027-1032. doi:10.1016/j.jplph.2010.02.011
[87] M. Filek, R. Keskinen, H. Hartikainen, I. Szarejko, A. Janiak, Z. Miszalski and A. Golda, “The Protective Role of Selenium in Rape Seedlings Subjected to Cadmium Stress,” Journal of Plant Physiology, Vol. 165, No. 8, 2008, pp. 833-844. doi:10.1016/j.jplph.2007.06.006
[88] P. D. Whanger, “Selenium in the Treatment of Heavy Metal Poisoning and Chemical Carcinogenesis,” Journal of Trace Element Electrolytes in Health and Disease, Vol. 6, No. 6, 1992, pp. 209-221.
[89] M. Zembala, M. Filek, S. Walas, H. Mrowiec, A. Korna?, Z. Miszalski and H. Hartikainen, “Effect of Selenium on Macro- and Microelement Distribution and Physiological Parameters of Rape and Wheat Seedlings Exposed to Cadmium Stress,” Plant Soil, Vol. 329, No. 1, 2010, pp. 457-468. doi:10.1007/s11104-009-0171-2
[90] A. Song, Z. Li, J. Zhang, G. Xue, F. Fan and Y. Liang, “Silicon-Enhanced Resistance to Cadmium Toxicity in Brassica chinensis L. is Attributed to Si-suppressed Cadmium Uptake and Transport and Si-Enhanced Antioxidant Defense Capacity,” Journal of Hazardous Material, Vol. 172, No. 1, 2009, pp. 74-83. doi:10.1016/j.jhazmat.2009.06.143
[91] D. Pankovic, M. Plesnicar, I. Arsenijeevic-Maksimovic, N. Petrovic, Z. Sakac and R. Kastori, “Effects of Nitrogen Nutrition on Photosynthesis in Cd-Treated Sunflower Plants,” Annals of Botany, Vol. 86, No. 4, 2000, pp. 841-847. doi:10.1006/anbo.2000.1250
[92] T. Landberg and M. Greger, “Influence of N and N Supplementation on Cd Accumulation in Wheat Grain,” 7th International Conference on the Biogeochemistry of Trace Elements, Uppsala ‘03, Uppsala, 15-19 June 2003, pp. 90-91.
[93] C. R. F. S. Soares, J. O. Oswaldo, J. G. de Carvalho and R. G. Guilherme, “Phosphate Nutrition and Arbuscular Mycorrhiza on Amelioration of Cadmium Toxicity in Trema [Trema micrantha (L.) Blum.],” Revista árvore, Vol. 31, No. 5, 2007, pp. 783-792. doi:10.1590/S0100-67622007000500002
[94] M. J. Hassan, Z. Zhu, B. Ahmad and Q. Mahmood, “Influence of Cadmium Toxicity on Rice Genotypes as Affected by Zinc, Sulfur and Nitrogen Fertilizers,” Caspian Journal of Environmental Sciences, Vol. 4, No. 1, 2006, pp. 1-8.
[95] M. Choudhary, L. D. Bailey, C. A. Grant and D. Leisle, “Effect of Zn on the Concentration of Cd and Zn in Plant Tissue of Two Durum Wheat Lines,” Canadian Journal of Plant Science, Vol. 75, No. 2, 1995, pp. 445-448. doi:10.4141/cjps95-074

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.