Effect of Rosehip (Rosa Canina) Extracts on Human Brain Tumor Cell Proliferation and Apoptosis


Rosehips are blossoms from the wild rose (Rosa canina) and are commonly used as an herbal remedy. Previous reports have shown that extracts made from rosehip plants are able to reduce cell proliferation of cancer cells. In this study, we investigated the efficacy of rosehip extracts in preventing cell proliferation of three human glioblastoma cell lines A-172, U-251 MG and U-1242 MG cell lines. Each of the glioblastoma cell lines treated with rosehip extracts (1 mg/mL-25 ng/mL) demonstrated a significant decrease in cell proliferation. The rosehip extract-mediated decrease in cell proliferation was equal to or better than the decrease of cell proliferation observed when inhibitors of the MAPK (U0126, 10 μM) or AKT (LY294002, 20 μM) signaling pathways were utilized. Additionally, pretreatment of the these cell lines with Rosehip extracts (1 mg/mL-25 ng/mL) selectively decreased AKT, MAPK, and p70S6K phosphorylation suggesting these extracts prevent glioblastoma multiforme cell proliferation by blocking both the MAPK and AKT signaling mechanisms. Results from colorimetric cell death assays, cell cycle analysis by flow cytometry, as well as western blot studies demonstrate that rosehip extracts inhibit cell proliferation but do not promote apoptosis. Moreover, rosehip extracts were able to increase the efficacy of Temozolomide, a chemotherapeutic agent used to treat patients with glioblastomas. Surprisingly, rosehip extracts demonstrated a greater inhibition of cell proliferation than in combination with Temozolomide (100 μM) or Temozolomide as a single agent. Taken together these data suggest that rosehip extracts are capable of decreasing glioblastoma cell proliferation without promoting apoptosis and demonstrate a greater cell proliferation inhibitory effect than Temozolomide. More importantly, rosehip extracts may serve as an alternative or compliment to current chemotherapeutic regimens for glioblastomas.

Share and Cite:

P. Cagle, O. Idassi, J. Carpenter, R. Minor, I. Goktepe and P. Martin, "Effect of Rosehip (Rosa Canina) Extracts on Human Brain Tumor Cell Proliferation and Apoptosis," Journal of Cancer Therapy, Vol. 3 No. 5, 2012, pp. 534-545. doi: 10.4236/jct.2012.35069.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] S. A. Grossman and J. F. Batara, “Current Management of Glioblastoma Multiforme,” Seminars in Oncology, Vol. 31, No. 5, 2004, pp. 635-644. doi:10.1053/j.seminoncol.2004.07.005
[2] D. N. Louis, H. Ohgaki, O. D. Wiestler, W. K. Cavenee, P. C. Burger, A. Jouvet, B. W. Scheithauer and P. Kleihues, “The 2007 WHO Classification of Tumours of the Central Nervous System,” Acta Neuropathologica, Vol. 114, No. 2, 2007, pp. 97-109. doi:10.1007/s00401-007-0243-4
[3] L. Barros, A. M. Carvalho and I. C. F. R. Ferreira, “Exotic Fruits as a Source of Important Phytochemicals: Improving the Traditional Use of Rosa Canina Fruits in Portugal,” Food Research International, Vol. 44, No. 7, 2011, pp. 2233-2236. doi:10.1016/j.foodres.2010.10.005
[4] T. Fujii and M. Saito, “Inhibitory Effect of Quercetin Isolated from Rose Hip (Rosa canina L.) against Melanogenesis by Mouse Melanoma Cells,” Bioscience Biotechnology & Biochemistry, Vol. 73, No. 9, 2009, pp. 1989-1993. doi:10.1271/bbb.90181
[5] A. Kornienko and A. Evidente, “Chemistry, Biology, and Medicinal Potential of Narciclasine and Its Congeners,” Chemical Reviews, Vol. 108, No. 6, 2008, pp. 1982-2014.
[6] C. E. Ulbricht and W. Chao, “Phytochemicals in the Oncology Setting,” Current Treatment Options in Oncology, Vol. 11, No. 3-4, 2010, pp. 95-106.
[7] G. Van Goietsenoven, V. Mathieu, F. Lefranc, A. Kornienko, A. Evidente and R. Kiss, “Narciclasine as Well as Other Amaryllidaceae Isocarbostyrils Are Promising GTP-ase Targeting Agents against Brain Cancers,” Medicinal Research Reviews, 2012, pp. 1-17 (in press).
[8] M. C. Perry, M. Demeule, A. Regina, R. Moumdjian and R. Beliveau, “Curcumin Inhibits Tumor Growth and Angiogenesis in Glioblastoma Xenografts,” Molecular Nutrition & Food Research, Vol. 54, No. 8, 2010, pp. 1192-1201.
[9] T. J. Turbyville, D. B. Gursel, R. G. Tuskan, J. C. Walrath, C. A. Lipschultz, S. J. Lockett, D. F. Wiemer, J. A. Beutler and K. M. Reilly, “Schweinfurthin A Selectively Inhibits Proliferation and Rho Signaling in Glioma and Neurofibromatosis Type 1 Tumor Cells in a NF1-GRD-Dependent Manner,” Molecular Nutrition & Food Research, Vol. 9, No. 5, 2010, pp. 1234-1243.
[10] E. C. Filippi-Chiela, E. S. Villodre, L. L. Zamin and G. Lenz, “Autophagy Interplay with Apoptosis and Cell Cycle Regulation in the Growth Inhibiting Effect of Resveratrol in Glioma Cells,” PLoS ONE, Vol. 6, No. 6, 2011, p. e20849. doi:10.1371/journal.pone.0020849
[11] N. Gagliano, G. Aldini, G. Colombo, R. Rossi, R. Colombo, M. Gioia, A. Milzaniand I. Dalle-Donne, “The Potential of Resveratrol against Human Gliomas,” Anti-cancer Drugs, Vol. 21, No. 2, 2010, pp. 140-150.doi:10.1097/CAD.0b013e32833498f1
[12] J. Jakubowicz-Gil, E. Langner, I. Wertel, T. Piersiak and W. Rzeski, “Temozolomide, Quercetin and Cell Death in the MOGGCCM Astrocytoma Cell Line” Chemico-Biological Interactions, Vol. 188, No. 1, 2010, pp. 190-203.doi:10.1016/j.cbi.2010.07.015
[13] E. Braganhol, L. L. Zamin, A. D. Canedo, F. Horn, A. S. Tamajusuku, M. R. Wink, C. Salbego and A. M. Battastini, “Antiproliferative Effect of Quercetin in the Human U138MG Glioma Cell Line,” Anticancer Drugs, Vol. 17, No. 6, 2006, pp. 663-671.doi:10.1097/01.cad.0000215063.23932.02
[14] L. Su, J. J. Yin, D. Charles, K. Q. Zhou, J. Moore and L. L. Yu, “Total Phenolic Contents, Chelating Capacities, and Radical-Scavenging Properties of Black Peppercorn, Nutmeg, Rosehip, Cinnamon and Oregano Leaf,” Food Chemistry, Vol. 100, No. 3, 2007, pp. 990-997.
[15] E. Rein, A. Kharami and K. Winther, “A Herbal Remedy, Hyben Vital (Stand. Powder of a Subspecies of Rosa Canina Fruits), Reduces Pain and Improves General Wellbeing in Patients with Osteoarthritis—A Double-Blind, Placebo-Controlled, Randomised Trial,” Phytomedicine, Vol. 11, No. 5, 2004, pp. 383-391.doi:10.1016/j.phymed.2004.01.001
[16] E. Rein, A. Kharazmi, G. Thamsbprg and K. Winther, “A Herbal Remedy, Made from a Subspecies of Rosehip Rosa Canina, Reduces Symptoms of Knee and Hip Osteoarthritis,” Osteoarthritis and Cartilage, Vol. 12, Suppl. 2, 2004, pp. S80-S80.
[17] O. Warholm, S. Skaar, E. Hedman, H. M. Molmen and L. Eik, “The Effects of a Standardized Herbal Remedy Made from a Subtype of Rosa canina in Patients with Osteoarthritis: A Double-Blind, Randomized, Placebo-Controlled Clinical Trial,” Current Therapeutic Research-Clinical and Experimental, Vol. 64, No. 1, 2003, pp. 21-31. doi:10.1016/S0011-393X(03)00004-3
[18] M. E. Olsson, K. E. Gustavsson, S. Andersson, A. Nilsson and R. D. Duan, “Inhibition of Cancer Cell Proliferation in Vitro by Fruit and Berry Extracts and Correlations with Antioxidant Levels,” Chemico-Biological Interactions, Vol. 52, No. 24, 2004, pp. 7264-7271.
[19] V. T. Tumbas, J. M. Canadanovic-Brunet, D. D. Cetojevic-Simin, G. S. Cetkovic, S. M. Ethilas and L. Gille, “Effect of Rosehip (Rosa canina L.) Phytochemicals on Stable Free Radicals and Human Cancer Cells,” Chemico-Biological Interactions, Vol. 92, No. 6, 2012, pp. 1273-1281.
[20] H. Ohgaki, “Genetic Pathways to Glioblastomas,” Neuropathology, Vol. 25, No. 1, 2005, pp. 1-7.doi:10.1111/j.1440-1789.2004.00600.x
[21] S. E. Aeder, P. M. Martin, J. W. Soh and I. M. Hussaini, “PKC-eta Mediates Glioblastoma Cell Proliferation through the Akt and mTOR Signaling Pathways,” Oncogene, Vol. 23, No. 56, 2004, pp. 9062-9069.doi:10.1038/sj.onc.1208093
[22] S. Brader and S. A. Eccles, “Phosphoinositide 3-Kinase Signalling Pathways in Tumor Progression, Invasion and Angiogenesis,” Tumori, Vol. 90, No. 1, 2004, pp. 2-8.
[23] A. B. Lassman, “Molecular Biology of Gliomas,” Curr Neurol Neurosci Rep, Vol. 4, No. 3, 2004, pp. 228-233.doi:10.1007/s11910-004-0043-3
[24] P. M. Martin, S. E. Aeder, C. A. Chrestensen, T. W. Sturgill and I. M. Hussaini, “Phorbol 12-Myristate 13-Acetate and Serum Synergize to Promote Rapamycin-Insensitive Cell Proliferation via Protein Kinase C-Eta,” Oncogene, Vol. 26, No. 3, 2007, pp. 407-414.doi:10.1038/sj.onc.1209791
[25] P. S. Mischel and T. F. Cloughesy, “Targeted Molecular Therapy of GBM,” Brain Pathology, Vol. 13, No. 1, 2003, pp. 52-61. doi:10.1111/j.1750-3639.2003.tb00006.x
[26] H. Jiang, X. Shang, H. Wu, S. C. Gautam, S. Al-Holou, C. Li, J. Kuo, L. Zhang and M. Chopp, “Resveratrol Down-Regulates PI3K/Akt/mTOR Signaling Pathways in Human U251 Glioma Cells,” Journal of Experimental Therapeutics and Oncology, Vol. 8, No. 1, 2009, pp. 25-33.
[27] P. Pu, C. Kang, J. Li, H. Jiang and J. Cheng, “The Effects of Antisense AKT2 RNA on the Inhibition of Malignant Glioma Cell Growth in Vitro and in Vivo,” Journal of Neuro-Oncology, Vol. 76, No. 1, 2006, pp. 1-11.doi:10.1007/s11060-005-3029-3
[28] P. Pu, C. Kang, Z. Zhang, X. Liu and H. Jiang, “Down- regulation of PIK3CB by siRNA Suppresses Malignant Glioma Cell Growth in Vitro and in Vivo,” Technology in Cancer Research and Treatment, Vol. 5, No. 3, 2006, pp. 271-280.
[29] W. Debinski and D. M. Gibo, “Fos-Related Antigen 1 (Fra-1) Pairing with and Transactivation of JunB in GBM Cells,” Cancer Biology & Therapy, Vol. 11, No. 2, 2011, pp. 254-262. doi:10.4161/cbt.11.2.13953
[30] W. Debinski and D. M. Gibo, “Fos-Related Antigen 1 Modulates Malignant Features of Glioma Cells,” Molecular Cancer Research, Vol. 3, No. 4, 2005, pp. 237-249.
[31] S. F. Rosenberger, J. S. Finch, A. Gupta and G. T. Bowden, “Extracellular Signal-Regulated Kinase 1/2-Mediated Phosphorylation of JunD and FosB is Required for Okadaic Acid-Induced Activator Protein 1 Activation,” The Journal of Biological Chemistry, Vol. 274, No. 2, 1999, pp. 1124-1130. doi:10.1074/jbc.274.2.1124
[32] J. Basbous, D. Chalbos, R. Hipskind, I. Jariel-Encontre and M. Piechaczyk, “Ubiquitin-Independent Proteasomal Degradation of Fra-1 is Antagonized by Erk1/2 Pathway-Mediated Phosphorylation of a Unique C-Terminal Destabilizer,” Molecular and Cellular Biology, Vol. 27, No. 11, 2007, pp. 3936-50. doi:10.1128/MCB.01776-06
[33] T. Sasaki, H. Kojima, R. Kishimoto, A. Ikeda, H. Kunimoto and K. Nakajima, “Spatiotemporal Regulation of c-Fos by ERK5 and the E3 Ubiquitin Ligase UBR1, and Its Biological Role,” Molecular Cell, Vol. 24, No. 1, 2006, pp. 63-75. doi:10.1016/j.molcel.2006.08.005
[34] F. J. Oliver, G. de la Rubia, V. Rolli, M. C. Ruiz-Ruiz, G. de Murcia and J. M. Murcia, “Importance of Poly(ADP-Ribose) Polymerase and Its Cleavage in Apoptosis. Lesson from an Uncleavable Mutant,” Journal of Biological Chemistry, Vol. 273, No. 50, 1998, pp. 33533-33539.doi:10.1074/jbc.273.50.33533
[35] E. S. Knudsen and J. Y. Wang, “Dual Mechanisms for the Inhibition of E2F Binding to RB by Cyclin-Dependent Kinase-Mediated RB Phosphorylation,” Molecular and Cellular Biology, Vol. 17, No. 10, 1997, pp. 5771-583.
[36] E. S. Newlands, M. F. Stevens, S. R. Wedge, R. T. Wheelhouse and C. Brock, “Temozolomide: A Review of Its Discovery, Chemical Properties, Pre-Clinical Devel- opment and Clinical Trials,” Cancer Treatment Reviews, Vol. 23, No. 1, 1997, pp. 35-61.doi:10.1016/S0305-7372(97)90019-0
[37] Y. Hirose, M. S. Berger and R. O. Pieper, “p53 Effects both the Duration of G2/M Arrest and the Fate of Temozolomide-Treated Human Glioblastoma Cells,” Cancer Research, Vol. 61, No. 5, 2001, pp. 1957-1963.
[38] M. D. Siegelin, D. E. Reuss, A. Habel, A. Rami and A. von Deimling, “Quercetin Promotes Degradation of Survivin and Thereby Enhances Death-Receptor-Mediated Apoptosis in Glioma Cells,” Neuro-Oncology, Vol. 11, No. 2, 2009, pp. 122-131.doi:10.1215/15228517-2008-085
[39] H. C. Kuo, W. H. Kuo, Y. J. Lee, W. L. Lin, F. P. Chou and T. H. Tseng, “Inhibitory Effect of Caffeic Acid Phenethyl Ester on the Growth of C6 Glioma Cells in Vitro and in Vivo,” Cancer Letters, Vol. 234, No. 2, 2006, pp. 199-208. doi:10.1016/j.canlet.2005.03.046
[40] P. Pyrko, A. Kardosh, W. Wang, W. Xiong, A. H. Schonthal and T. C. Chen, “HIV-1 Protease Inhibitors Nelfinavir and Atazanavir Induce Malignant Glioma Death by Triggering Endoplasmic Reticulum Stress,” Cancer Research, Vol. 67, No. 22, 2007, pp. 10920-10928. doi:10.1158/0008-5472.CAN-07-0796

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.