Growth and Characterization of Holmium Oxalate Heptahydrate Crystals


Single crystals of holmium oxalate heptahydrate are grown by gel diffusion method using organic agar gel as a medium of growth. The crystals grow in the agar gel with hexagonal morphology having well defined habit faces Powder X-ray diffraction results show that the crystals belong to monoclinic system bearing the space group P21/c with cell parameters; a = 12.197? , b = 11.714 , c = 6.479 , α = 90°, β = 120.12°, γ = 90°, V = 799.6? 3. Fourier transform Infrared spectrum of the crystals shows the presence of water and other associated functional groups. Thermogravimetric analysis support the presence of 7 H2O molecules associated with holmium oxalate crystal lattice. The thermal decomposition in the nitrogen atmosphere leads to the formation of holmium oxide as the final product.

Share and Cite:

B. Want and F. Dar, "Growth and Characterization of Holmium Oxalate Heptahydrate Crystals," Journal of Crystallization Process and Technology, Vol. 2 No. 4, 2012, pp. 137-141. doi: 10.4236/jcpt.2012.24019.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] T. J. Kane and R. L. Byer, “Monolithic, Unidirectional Single-Mode Nd:YAG Ring Lase,” Optics Letters, Vol. 10, No. 2, 1985, pp. 65-67. doi:10.1364/OL.10.000065
[2] C. R. Ronda, T. Jüstel and J. Nikol, “Rare Earth Phosphors: Fundamentals and Application,” Journal of Alloys and Compounds, Vol. 275-277, 1998, pp. 669-676. doi:10.1016/S0925-8388(98)00416-2.
[3] R. J. H. Voorhoeve, J.P. Remeika, P. E. Freeland and B. T. Matthias, “Rare-Earth Oxides of Manganese and Cobalt Rival Platinum for the Treatment of Carbon Monoxide in Auto Exhaust,” Science, Vol. 177, No. 4046, 1972, pp. 353-354. doi:10.1126/science.177.4046.353
[4] M. Sagawa, S. Fujimura, N. Togawa, H. Yamamoto and Y. Matsuura, “New Material for Permanent Magnets on a Base of Nd and Fe,” Journal of Applied Physics, Vol. 55, No. 6, 1984, pp. 2083-2087. doi:10.1063/1.333572.
[5] Y. Heesun, S. Sooyeon, A. Mostafa and P. H. Holloway, “Synthesis and Luminescent Properties of Rare EarthDoped YVO4 Nanocrystalline Powders,” Journal of Ceramic Processing Research, Vol. 8, No. 4, 2007, pp. 256-260.
[6] E. Garskaite, M. Lindgren, M. Einarsrud and T. Grande, “Luminescent Properties of Rare Earth (Er, Yb) Doped Yttrium Aluminium Garnet Thin Films and Bulk Samples Synthesized by an Aqueous Sol-Gel Technique,” Journal of the European Ceramic Society. Vol. 30, 2010, pp. 1707-1715. doi:10.1016/j.eurceramsoc.2010.01.001
[7] K. Meier, R. Cardoso-Gil, W. Schnelle, H. Rosner, U. Burkhardt and U. Schwarz, “Thermal, Magnetic, Electronic, and Superconducting Properties of Rare-Earth Metal Pentagermanides REGe5 (RE = La, Nd, Sm, Gd) and Synthesis of TbGe5,” Zeitschrift für Anorganische und Allgemeine Chemie, Vol. 636, No. 8, 2010, pp. 14661473. doi:10.1002/zaac.201000065 .
[8] R. Peters, K. Petermann and G. Huber, “Growth Technology and Laser Properties of Yb-Doped Sesquioxides,” In: P. Capper and P. Rudolph, Eds., Crystal Growth Technology: Semiconductors and Dielectrics, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2010, p. 267.
[9] A. B. Gadkaria, T. J. Shinde and P. N. Vasambekar, “Magnetic Properties of Rare Earth Ion (Sm3+) Added Nanocrystalline Mg-Cd Ferrites, Prepared by Oxalate CoPrecipitation Method” Journal of Magnetism and Magnetic Materials, Vol. 322, No. 24, 2010, pp. 38233827. doi:10.1016/j.jmmm.2010.06.021
[10] M. A. El-F. Gabal, “Synthesis and Characterization of Nanocrystalline PbTiO3,” Industrial & Engineering Chemistry Research, Vol. 50, No. 24, 2011, pp. 13771-13777. DOI: 10.1021/ie202255g
[11] J. Blanusa, N. Jovic, T. Dzomic, B. Antic, A. Kremenovic, M. Mitric and V. Spasojevic, “Magnetic Susceptibility and Ordering of Yb and Er in Phosphors Yb, Er: Lu2O3,” Optical Materials, Vol. 30, 2008, pp. 1153-1156. doi:10.1016/j.optmat.2007.05.039
[12] S. Sato, R. Takahashi, M. Kobune and H. Gotoh, “Basic Properties of Rare-Earth Oxide,” Applied Catalysis A: General, Vol. 356, No. 1, 2009, pp. 57-63. doi:10.1016/j.apcata.2008.12.019.
[13] M. A. Gabal, S. A. Hameed and A. Y. Obaid, “CoTiO3 via Cobalt Oxalate-TiO2 Precursor. Synthesis and Characterization,” Materials Characterization, Vol. 71, 2012, pp. 87-94. doi:10.1016/j.matchar.2012.06.009
[14] C. Artini, G. A. Costa and R. Masini, “Study of the Formation Temperature of Mixed LaREO3 (RE≡Dy, Ho, Er, Tm, Yb, Lu) and NdGdO3 Oxides,” Journal of Thermal Analysis and Calorimetry, Vol. 103, No. 1, 2011, pp. 1721. doI:10.1007/s10973-010-0973-8
[15] K. Liua, G. Jia, Y. Zheng, Y. Song, M. Yang, Y. Huang, L. Zhang and H. You , “Room-Temperature Synthesis and Luminescence Properties of Eu3+/Tb3+-Doped La(1, 3,5-BTC)(H2O)6,” Inorganic Chemistry Communications, Vol. 12, 2009, pp. 1246-1249. doi:10.1016/j.inoche.2009.09.033
[16] P. K. Gallagher, F. Schrey and Prescott, “Study of the Thermal Decomposition of Europium(III) Oxalate Using the Moessbauer Effect,” Inorganic Chemistry, Vol. 9, 1970, pp. 215-219. doi:10.1021/ic50084a004
[17] B. Want, “Single Crystal Growth and Characterization of Lanthanum-Neodymium Oxalate Octahydrate,” Journal of Crystal Growth, Vol. 335, No. 1, 2011, pp. 90-93. doi:10.1016/j.jcrysgro.2011.08.020.
[18] M. V. John and M. A. Ittyachen, “Growth and Characterization of Mixed Cerium Lanthanum Oxalate Decahydrate Crystals in Silica Gel,” Crystal Research and Technology, Vol. 36, 2001, pp. 141-146. doi:10.1002/1521-4079(200102)36:2<141::AID-CRAT141>3.0.CO;2-0
[19] A. M. E. Raj, D. D. Jayanthi, V. B. Jothy, M. Jayachandran and C. Sanjeeviraja, “Growth Aspects of Barium Oxalate Monohydrate Single Crystals in Gel Medium,” Crystal Research and Technology, Vol. 43, No. 12, 2008, pp. 1307-1313. doi:10.1002/crat.200800038
[20] C. Joseph, G. Varughese and M. A. Ittyachen, “Growth and Characterization of Mixed Neodymium Praseodymium Oxalate Decahydrate Crystals in Silica Gel,” Crystal Research and Technology, Vol. 30, No. 2, 1995, pp. 159164. doi:10.1002/crat.2170300203.
[21] G. Varghese, M. A. Ittyachen and J. Issac, “Studies on La1–xCux?3C2O4?nH2O Crystals Grown in Hydro-Silica Gel,” Crystal Research and Technology, Vol. 25, No. 7, 1990, pp. 153-159. doi:10.1002/crat.2170250722,
[22] I. Korah, C. Joseph and Ittyachan, “Growth and Characterisation of Gadolinium Samarium Oxalate Single Crystals,” Crystal Research and Technology, Vol. 42, No. 10, 2007, pp. 939-942. doi:10.1002/crat.200710962.
[23] H. K. Henisch, “Crystals in Gels and Liesegang Rings,” Cambridge University Press, Cambridge, 1988.
[24] A. Boultif and D. Louer, “Powder Pattern Indexing with the Dichotomy Method,” Journal of Applied Crystallography, Vol. 37, No. 5, 2004, pp. 724-773. doi:10.1107/S0021889804014876.
[25] B. A. A. Balboul, “Thermal Decomposition Study of Erbium Oxalate Hexahydrate,” Thermochimica Acta, Vol. 351, No. 1, 2000, pp. 55-60. doi:10.1016/S0040-6031(00)00353-1
[26] K. Nakamoto, “Infra Red and Raman Spectra of Inorganic and Coordination Compounds,” 6th Edition, John-Wiley & Sons, Hoboken, 2009, pp. 766-773.
[27] G. Socrates, “Infrared and Raman Characteristic Group Frequencies: Table and Charts,” 3rd Edition, John Wiley & Sons Inc., New York, 2004, p. 287.
[28] J. Fujita, A. E. Martell and K. Nakamoto, “Infrared Spectra of Metal Chelate Compounds. VI. A Normal Coordinate Treatment of Oxalato Metal Complexes,” Journal of Chemical Physics, Vol. 36, No. 2, 1962, pp. 324-332. doi:10.1063/1.173250.
[29] J. R. Ferraro, “Low Frequency Vibrations of Inorganic and Co-ordination Com?pounds,” Plenum Press, New York, 1971.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.