In Vitro Organogenesis of Quisqualis indica Linn.


Shoot organogenesis and plant regeneration were achieved on callus derived from leaf section and stem base explants of Quisqualis indica (Combretaceae). In vitro cultures were established using nodal segments obtained from mature field-grown shrubby plants. For the development of optimized protocol, different types and concentrations of plant growth regulators were used to induce adventitious shoot regeneration via callus from leaf section and one-node stem base explants obtained from in vitro regenerated micro shoots and direct field-grown newly flush-off shoots. The TDZ was considered to be the best among the cytokinins (6-benzyladenine (BA), 6-(?-?, dimethylallyamino purine) (2-iP) and thidiazuron (TDZ) added to the Murashige and Skoog’s medium (MS) for adventitious shoot productions. A combination of 1.0 mg/L TDZ and 0.5 mg/L GA3 was most effective in stimulating callus induction and adventitious shoot regeneration from the leaf section derived calli with an average of 6 shoots per callus explant and an average of 8 shoots per callus explant originated from one-node stem base explants. In vitro raised shoots were sub-cultured on MS medium supplemented with 1.0 mg/L BA and 0.5 mg/L GA3 for further shoot growth. Maximum rooting of in vitro regenerated shoots was obtained on MS medium supplemented with either 0.5 mg/L indole-3-acetic acid (IAA) or indole-3-butyric acid (IBA) individually or a combination of 0.5 mg/L IAA and 0.5 mg/L IBA. Plantlets raised in vitro were acclimatized and subsequently transferred to experimental field.

Share and Cite:

J. Mandal and U. Laxminarayana, "In Vitro Organogenesis of Quisqualis indica Linn.," American Journal of Plant Sciences, Vol. 3 No. 9, 2012, pp. 1272-1282. doi: 10.4236/ajps.2012.39154.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] C. Limmatvapirat, T. Phaechamud and S. Keokitichai, “The Total Polyphenol Content of Some Edible Flowers of Thailand,” Proceeding of the 21st Congress of Federation of Asian Pharmaceutical Associations, Yokohama, 18-21 November 2006, p. 288.
[2] P. Wetwitayaklung, T. Phaechamud and S. Keokitichai, “The Study of Antioxidant Activites of Edible Flower,” Proceedings of International Workshop on Medicinal and aromatic Plants, Chiang Mai, 15-18 January 2007, p. 75.
[3] P. Wetwitayaklung, T. Phaechamud, C. Limmatvapirat and S. Keokitichai, “The Study of Antioxidant Activities of Edible Flower Extracts,” ISHS Acta Horticulturae, Vol. 786, 2008, pp. 185-192.
[4] A. Bose, S. Bose, S. Maji and P. Chakraborty, “Free Radical Scavenging Property of Quisqualis indica,” International Journal of Biomedical and Pharmaceutical Sciences, Vol. 3, No. 1, 2009, pp. 1-4.
[5] B. Hazra, R. Sarkar, S. Biswas and N. Mandal, “Comparative Study of the Antioxidant and Reactive Oxygen Species Scavenging Properties in the Extracts of the Fruits of Terminalia chebula, Terminalia belerica and Emblica officinalis,” BMC Complementary and Alternative Medicine, Vol. 10, 2010, p. 20. HUdoi:10.1186/1472-6882-10-20U
[6] H. S. Lee, N. H. Won, K. H. Kim, H. Lee, W. Jun and K. W. Lee, “Antioxidant Effects of Aqueous Extract of Terminalia chebula in Vivo and in Vitro,” Biological and Pharmaceutical Bulletin, Vol. 28, No. 9, 2005, pp. 1639-1644. HUdoi:10.1248/bpb.28.1639U
[7] L. S. de Padua, et al., “Medicinal and Poisonous Plants 1,” In: I. F. Hanum and L. J. G. van der Maesen, Eds., Plant Resources of South-East Asia, Backhuys Publishers, Leiden, Vol. 12, No. 1, 1999, p. 711.
[8] T. Ishizaki, K. Kato and M. Kumada, “Effect of Quisqualic Acid upon Ascaris suum in Vitro in Comparison with Those of Kainic Acid, Alphar-Allokainic Acid and Pyrantel Palmoate,” Japanese Journal of Parasitology, Vol. 22, No. 4, 1973, pp. 181-186.
[9] W. S. Kan, “Manual of Medicinal Plants in Taiwan,” National Resource Institute of Chinese Medicine, Vol. 3, 1985, p. 601.
[10] L. Ta-Chen, M. Ying-Tsun, W. Jender and H. Feng-Lin, “Tannin and Related Compounds from Quisqualis indica,” Journal of the Chinese Chemical Society, Vol. 44, No. 2, 1997, pp. 151-155.
[11] M. Lambardi and E. Rugini, “Micropropagation of Olive (Olea europaea L.),” In: S. M. Jain and K. Ishii, Eds., Micropropagation of Woody Trees and Fruits, Kluwer Academic Publishers, The Netherlands, 2003, pp. 621-646. doi:10.1007/978-94-010-0125-0_21U
[12] K. Nirmal Babu, A. Sajina, D. Minoo, C. Z. John, P. M. Mini, K. V. Tushar, J. Rema and P. N. Ravindran, “Micropropagation of Camphor Tree (Cinnamomum camphora),” Plant Cell Tissue and Organ Culture, Vol. 74, No. 2, 2003, pp. 179-183.
[13] B. Shyamkumar, C. Anjaneyulu and C. C. Giri, “Multiple Shoot Induction from Cotyledonary Node Explants of Terminalia chebula,” Journal of Plant Biology, Vol. 47, No. 4, 2003, pp. 585-588.
[14] U. Dhar and M. Joshi, “Efficient Plant Regeneration Protocol through Callus for Saussurea obvallata (DC) Edgew. (Asteraceae): Effect of Explant Type, Age, and Plant Growth Regulators,” Plant Cell Reports, Vol. 24, No. 4, 2005, pp. 195-200.HUdoi:10.1007/s00299-005-0932-1U
[15] A. Sadanandam, M. Ramesh, P. Umate and K. V. Rao, “Micropropagation of Terminalia bellirica Roxb.—A Sericulture and Medicinal Plant,” In Vitro Cellular & Developmental Biology—Plant, Vol. 41, No. 3, 2005, pp. 320-323. HUdoi:10.1079/IVP2004626U
[16] S. Pandey, M. Singh, U. Jaiswal and V. S. Jaiswal, “Shoot Initiation and Multiplication from a Mature Tree of Terminalia arjuna Roxb,” In Vitro Cellular & Developmental Biology—Plant, Vol. 42, No. 5, 2006, pp. 389-393. HUdoi:10.1079/IVP2006790U
[17] M. W. Bairu, W. A. Stirk, K. Dolezal and J. Van Staden, “Optimizing the Micropropagation Protocol for the Endangered Aloe polyphylla: Can Meta-Topolin and Its Derivatives Serve as Replacement for Benzyladenine and Zeatin?” Plant Cell, Tissue and Organ Culture, Vol. 90, No. 1, 2007, pp. 15-23. HUdoi:10.1007/s11240-007-9233-4U
[18] J. Meiners, M. Schwab and I. Szankowski, “Efficient in Vitro Regeneration Systems for Vaccinium species,” Plant Cell, Tissue and Organ Culture, Vol. 89, No. 4, 2007, pp. 169-176. HUdoi:10.1007/s11240-007-9230-7U
[19] K. Kwapata, R. Sabzikar, M. B. Sticklen and J. D. Kelly, “In Vitro Regeneration and Morphogenesis Studies in Common Bean,” Plant Cell, Tissue and Organ Culture, Vol. 100, No. 1, 2010, pp. 97-105. HUdoi:10.1007/s11240-009-9624-9U
[20] K. Kanwar, J. Joseph and R. Deepika, “Comparison of in Vitro Regeneration Pathways in Punica granatum L.,” Plant Cell, Tissue and Organ Culture, Vol. 100, No. 2, 2010, pp. 199-207. HUdoi:10.1007/s11240-009-9637-4U
[21] G. M. Abogadallah and W. P. Quick, “Fast Versatile Regeneration of Trifolium alexandrinum L.,” Plant Cell, Tissue and Organ Culture, Vol. 100, No. 1, 2010, pp. 39-48. HUdoi:10.1007/s11240-009-9614-yU
[22] T. Murashige and F. Skoog, “A Revised Medium for Rapid Growth and Bioassays with Tobacco Tissue Cultures,” Physiologia Plantarum, Vol. 15, No. 3, 1962, pp. 473-497. HUdoi:10.1111/j.1399-3054.1962.tb08052.xU
[23] G. J. De Klerk, “Rooting of Micropropagules,” In: Y. Waisel, A. Eshel and U. Kafkafi, Eds., Plant Roots the Hidden Half, 3rd Edition, Marcel Dekker Inc., New York, 2002, pp. 349-357. HUdoi:10.1201/9780203909423.ch21U
[24] E. N. Tzitzikas, M. Bergervoet, K. Raemakers, J. P. Vincken, A. van Lammeren and R. G. F. Visser, “Regeneration of Pea (Pisum sativum L.) by a Cyclic Organogenic System,” Plant Cell Reports, Vol. 23, No. 7, 2004, pp. 453-460. HUdoi:10.1007/s00299-004-0865-0U
[25] G. Lloyd and B. McCown, “Commercially Feasible Micropropagation of Mountain Laurel (Kalmia latifolia) by Use of Shoot Tip Culture,” Combined Proceedings of the International Plant Propagators’ Society, Vol. 30, 1980, pp. 421-427.
[26] M. P. A. Jones, Z. Yi, S. J. Murch and P. K. Saxena, “Thidiazuron-Induced Regeneration of Echinacea purpurea L.: Micropropagation in Solid and Liquid Culture Systems,” Plant Cell Reports, Vol. 26, No. 1, 2007, pp. 13-19. HUdoi:10.1007/s00299-006-0209-3U
[27] C. N. Kanchiswamy and M. Maffei, “Callus Induction and Shoot Regeneration of Phaseolus lunatus L. cv. Wonder Bush and cv. Pole Seiva,” Plant Cell, Tissue and Organ Culture, Vol. 92, No. 2, 2008, pp. 239-242. HUdoi:10.1007/s11240-007-9322-4U
[28] N. Irvani, M. Solouki, M. Omidi, A. R. Zare and S. Shabnazi, “Callus Induction and Plant Regeneration in Dorem ammoniacum D., an Endangered Medicinal Plant,” Plant Cell, Tissue and Organ Culture, Vol. 100, No. 3, 2010, pp. 293-299. HUdoi:10.1007/s11240-009-9650-7U
[29] R. Siva, C. Rajasekaran and G. Mudgal, “Induction of Somatic Embryogenesis and Organogenesis in Oldenlandia umbellata L., a Dye-Yielding Medicinal Plant,” Plant Cell, Tissue and Organ Culture, Vol. 98, No. 2, 2009, pp. 205-211. HUdoi:10.1007/s11240-009-9553-7U
[30] B. Cuenca, A. Ballester and A. M. Vieitez, “In Vitro Adventitious Bud Regeneration from Internode Segments of Beech,” Plant Cell, Tissue and Organ Culture, Vol. 60, No. 3, 2000, pp. 213-220. HUdoi:10.1023/A:1006428717309U
[31] A. W. Woodward and B. Bartel, “Auxin. Regulation, Action and Interaction,” Annals of Botany, Vol. 95, No. 5, 2005, pp. 707-735. HUdoi:10.1093/aob/mci083U
[32] H. Sakakibara, “Cytokinins: Activity, Biosynthesis and Translocation,” Annual Review of Plant Biology, Vol. 57, 2006, pp. 431-449. HUdoi:10.1146/annurev.arplant.57.032905.105231U
[33] M. J. Jeong, H. J. Song, D. J. Park, J. Y. Min, J. S. Jo, B. M. Kim, H. G. Kim, Y. D. Kim, R. M. Kim, C. S. Karigar and M. S. Choi, “High Frequency Plant Regeneration Following Abnormal Shoot Organogenesis in the Medicinal Tree Hovenia dulcis,” Plant Cell, Tissue and Organ Culture, Vol. 98, No. 1, 2009, pp. 59-65. HUdoi:10.1007/s11240-009-9538-6U
[34] J. Mandal, “Shoot Regeneration through Organogenesis of Leaf and Shoot Base Explants of Hyptis suaveolens (Linn.) Poit.,” Phytomorphology, Vol. 61, No. 3-4, 2011, pp. 85-92.
[35] S. Erisen, M. Yorgancilar, E. Atalay and M. Babaoglu, “Prolific Shoot Regeneration of Astragalus cariensis Boiss,” Plant Cell, Tissue and Organ Culture, Vol. 100, No. 2, 2010, pp. 229-233. HUdoi:10.1007/s11240-009-9638-3UH
[36] A. Piovan, R. Caniato, E. M. Cappelletti and R. Filippini, “Organogenesis from Shoot Segments and Via Callus of Endangered Kosteletzkya pentacarpos (L.) Ledeb,” Plant Cell, Tissue and Organ Culture, Vol. 100, No. 3, 2010, pp. 309-315. HUdoi:10.1007/s11240-009-9652-5UH
[37] B. C. Tan, C. F. Chin and P. Alderson, “Optimization of Plantlet Regeneration from Leaf and Nodal Derived Callus of Vanilla Planifolia Andrews,” Plant Cell, Tissue and Organ Culture, Vol. 105, No. 3, 2011, pp. 457-463. HUdoi:10.1007/s11240-010-9866-6UH
[38] R. Liberman, L. Shahar, A. Nissim-Levi, D. Evenor, M. Reuveni and M. Oren-Shamir, “Shoot Regeneration from Leaf Explants of Brunfelsia calycina,” Plant Cell, Tissue and Organ Culture, Vol. 100, No. 3, 2010, pp. 345-348. HUdoi:10.1007/s11240-009-9642-7UH
[39] X. Liu and P. M. Pijut, “Plant Regeneration from in Vitro Leaves of Mature Black Cherry (Prunus serotina),” Plant Cell, Tissue and Organ Culture, Vol. 94, No. 2, 2008, pp. 113-123. HUdoi:10.1007/s11240-008-9393-xU
[40] P. L. Huang, L. J. Liao, C. C. Tsai and Z. H. Liu, “Micropropagation of Bromeliad Aechmea fasciata via Floral Organ Segments and Effects of Acclimatization on Plantlet Growth,” Plant Cell, Tissue and Organ Culture, Vol. 105, No. 1, 2011, pp. 73-78. HUdoi:10.1007/s11240-010-9843-0U
[41] B. K. Ghimire, E. S. Seong, E. Goh, N. Y. Kim, W. H. Kang, E. H. Kim, C. Y. Yu and I. M. Chung, “High-Frequency Direct Shoot Regeneration from Drymaria cordata Willd. Leaves,” Plant Cell, Tissue and Organ Culture, Vol. 100, No. 2, 2010, pp. 209-217. HUdoi:10.1007/s11240-009-9627-6UH
[42] J. E. Preece, C. A. Hutterman, W. C. Ashby and P. L. Roth, “Micropropagation and Cutting Propagation of Silver Mapple. 1. Results with Adult and Juvenile Propagules,” Journal of the American Society for Horticultural Science, Vol.116, No. 1, 1991, pp. 142-148.
[43] T. R. Marks and S. E. Simpson, “Factors Affecting Shoot Development in Apicaly Dominant Acer Cultivars in Vitro,” Journal of Horticultural Science, Vol. 69, No. 3, 1994, pp. 543-551.
[44] S. R. Natesha and N. K. Vijayakumar, “In Vitro Propagation of Ailanthus triphysa,” Journal of Tropical Forest Science, Vol. 16, 2004, pp. 402-412.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.