Biosensors for Pesticide Detection: New Trends

Abstract

Due to the large amounts of pesticides commonly used and their impact on health, prompt and accurate pesticide analysis is important. This review gives an overview of recent advances and new trends in biosensors for pesticide detection. Optical, electrochemical and piezoelectric biosensors have been reported based on the detection method. In this review biosensors have been classified according to the immobilized biorecognition element: enzymes, cells, antibodies and, more rarely, DNA. The use of tailor-designed biomolecules, such as aptamers and molecularly imprinted polymers, is reviewed. Artificial Neural Networks, that allow the analysis of pesticide mixtures are also presented. Recent advances in the field of nanomaterials merit special mention. The incorporation of nanomaterials provides highly sensitive sensing devices allowing the efficient detection of pesticides.

Share and Cite:

Sassolas, A. , Prieto-Simón, B. and Marty, J. (2012) Biosensors for Pesticide Detection: New Trends. American Journal of Analytical Chemistry, 3, 210-232. doi: 10.4236/ajac.2012.33030.

1. Introduction

In agriculture, farmers use numerous pesticides to protect crops and seeds before and after harvesting. Pesticide is a term used in broad sense for organic toxic compounds used to control insects, bacteria, weeds, nematodes, rodents and other pests. The pesticide residues may enter into the food chain through air, water and soil. They affect ecosystems and cause several health problems to animals and humans. Pesticides can be carcinogenic and cytotoxic. They can produce bone marrow and nerve disorders, infertility, and immunological and respiratory diseases.

Detection of pesticides at the levels established by the Environmental Protection Agency (EPA) remains a challenge. Chromatographic methods coupled to selective detectors have been traditionally used for pesticide analysis due to their sensitivity, reliability and efficiency. Nevertheless, they are time-consuming and laborious, and require expensive equipments and highly-trained technicians. Over the past decade, considerable attention has been given to the development of biosensors for the detection of pesticides as a promising alternative. A biosensor is a self-contained device that integrates an immobilized biological element (e.g. enzyme, DNA probe, antibody) that recognizes the analyte (e.g. enzyme substrate, complementary DNA, antigen) and a transduction element used to convert the (bio)chemical signal resulting from the interaction of the analyte with the bioreceptor into an electronic one. According to the signal transduction technique, biosensors are classified into electrochemical, optical, piezoelectric and mechanical biosensors. Electrochemical transducers have been widely used in biosensors for pesticides detection due to their high sensitivity [1-3]. Additionally, their low cost, simple design and small size, make them excellent candidates for the development of portable biosensors [4-8]. According to the biorecognition element, enzymatic, whole cell, immunochemical, and DNA biosensors have been developed for pesticides detection.

This review presents a state-of-the-art update in pesticide biosensors. To clearly report the last advances, biosensors have been classified according to the immobilized recognition element. New trends in the field of pesticide analysis are also reviewed. Aptamers are shown as good candidates to replace the conventional antibodies and, thus, to be the biorecognition elements in more robust and stable biosensors for pesticide detection. Due to exceptional characteristics, molecular imprinted polymers (MIPs) are innovative affinity-based recognition elements that are exploited for the development of environmental sensors. The use of Artificial Neural Networks (ANNs) coupled with a sensor array could substantially improve the selectivity and allow exact identification of pesticides present in a sample. Recent reports on the properties of nanomaterials show nanoparticles and nanotubes as promising tools to improve the efficiency of biosensors for the detection of pesticides.

2. Enzyme Biosensors

Enzyme biosensors for pesticide detection are based on measurements of enzyme inhibition or on direct measurements of compounds involved in the enzymatic reaction.

2.1. Inhibition-Based Biosensors

2.1.1. Cholinesterase-Based Biosensors

Enzymatic detection of pesticides is mainly based on cholinesterase (ChE) inhibition [6-10]. Organophosphate and carbamate insecticides are the main ChE inhibitors (Table 1). Other compounds, such as heavy metals, fluoride, nerve gas or nicotine, can also inhibit ChE enzyme. Although this lack of selectivity, ChE-based biosensors are shown as powerful tools when a rapid toxicity screening is required.

2.1.1.1. Mono-Enzymatic Biosensors

Two types of natural ChE enzymes are known: acetylcholinesterase (AChE) and butyrylcholine-sterase (BChE). These enzymes have different substrates: AChE preferentially hydrolyzes acetyl esters, such as acetylcholine (Equation (1)), whereas BChE hydrolyzes butyrylcholine (Equation (2)):

(1)

(2)

The pH variation produced by the acid formation can be measured using electrochemical methods, such as potentiometry [11]. This pH change can also be measured using pH-sensitive spectrophotometric indicators [12,13] or pH sensitive fluorescence indicators [14].

Artificial substrates, acetylthiocholine for AChE and butyrylthiocholine for BChE, have been also used. The enzymatic hydrolysis of these substrates produces electroactive thiocholine (Equations (3) and (4)).

(3)

(4)

(5)

This system has two advantages over the bi-enzymatic ChE/ChOD biosensors. First, it has a simpler design. Secondly, the detection potential is lower than the one used for the oxidation of H2O2.

La Rosa et al. proposed the use of 4-aminophenyl acetate as alternative ChE substrate [15,16]. They oxidize the enzymatic product 4-aminophenol at +250 mV vs SCE. Electrochemical biosensors for pesticide detection based on the use of this substrate avoid interferences from the oxidation of other electroactive compounds [15- 18]. However, 4-aminophenyl acetate is not commercially available and its use involves a laborious and timeconsuming synthesis. Moreover, this substrate is unstable and requires special storage conditions (nitrogen atmosphere, below 0˚C).

2.1.1.2. Bi-Enzymatic Biosensors

In most cases, ChE is coupled to choline oxidase (ChOD) [6]. AChE hydrolyzes its natural substrate to choline and acetic acid (Equation (1)). Since choline is not electrochemically active, ChOD is used to produce H2O2, which can be oxidized onto the platinum electrode at around + 0.7 V vs Ag/AgCl (Equations (7) and (8)). However, an over-potential is required, favouring the oxidation of interfering electroactive species present in real samples. To overcome this drawback, different approaches have been proposed, such as the use of nanomaterial-modified electrodes. A biosensor for the detection of pesticides and nerve agents was developed by immobilizing AChE and ChOD onto Au-Pt bimetallic NPs [19]. The synergistic effect of these nanoparticles increased the surface area and facilitated the electron transfer process, reducing the applied potential for the detection of H2O2. Alternatively to H2O2 oxidation, ChE inhibition can be followed using a Clark electrode able to measure the oxygen consumed by the ChOD catalyzed reaction (Equations (6)-(8)) [20].

(1)

(6)

(7)

(8)

AChE was also coupled to tyrosinase [18]. In this case, AChE enzymatic hydrolysis of phenyl acetate produces phenol compounds, characterized by a high oxidation potential. For this reason, tyrosinase enzyme was used to convert the phenol to quinone, compound that can be electrochemically reduced to catechol at –150 mV vs Ag/AgCl.

2.1.1.3. Tri-Enzymatic Biosensors

Peroxidase may be added to the bi-enzyme system to develop a tri-enzymatic biosensor. Karousos et al. used a Quartz Crystal Microbalance (QCM) sensor based on three enzymes for the determination of organophosphorus and

Table 1. Characteristics of electrochemical cholinesterase-based biosensors for pesticide detection.

carbamate pesticides [21]. Acetylcholine was converted to choline by AChE and then, choline was converted to hydrogen peroxide by choline oxidase. In the presence of HRP, H2O2 oxidized 3,3’-diaminobenzidine to an insoluble product that precipitated out and adsorbed on the crystal surface causing a decrease in the resonant frequency of the crystal. AChE inhibition caused by pesticides reduced the amount of QCM-detectable precipitate produced. This QCM-enzyme sensor system allowed detecting carbaryl and dicholorvos concentrations down to 1 ppm.

2.1.1.4. ChE Sources

The enzyme source has an important effect on the biosensor performance. Several AChE enzymes are available from different sources, such as Electric eel, Bovine or Human erythrocytes, Horse serum and Human blood. Generally, ChE enzymes isolated from insects are more sensitive than those extracted from other sources. The use of recombinant ChE enzymes also allows improvements on the sensitivity of biosensors [22]. As an example, Valdes-Ramirez and co-workers compared the use of three AChEs in biosensors for the detection of dichlorovos in a sample of apple skin [23]. The use of genetically modified AChE decreased four orders of magnitude the detection limit found for the use of AChE from wild type Drosophila melanogaster and Electriceel.

2.1.2. Tyrosinase-Based Biosensors

Tyrosinase oxidizes monophenols in two consecutive steps: first, the enzyme catalyzes the o-hydroxylation of monophenol to o-diphenol (cresolate activity, Equation (9)) which, in a second step, is oxidized to its corresponding o-quinone (catecholase activity, Equation (10)):

(9)

(10)

Tyrosinase is inhibited by different compounds, such as carbamate pesticides and atrazine. Numerous electrochemical biosensors based on the inhibition of tyrosinase activity have been reported [24-29] (Table 2).

Tyrosinase biosensors suffer from poor specificity since many substrates and inhibitors can interfere. The enzyme is inherently unstable, reducing the lifetime of the tyrosinase-based biosensors. However, tyrosinase can stand high temperatures and the organic solvents used to dissolve the pesticides.

2.1.3. Alkaline Phosphatase (ALP)-Based Biosensors

Alkaline phosphatase catalyses the following reaction:

(11)

ALP is inhibited by different compounds. Several ALPbased biosensors for the detection of pesticides have

Table 2. Characteristics of electrochemical inhibition-based biosensors using tyrosinase for pesticide detection.

been developed using different enzyme substrates depending on the transduction method.

Ayyagari et al. described a chemiluminescent ALPbased biosensor for the detection of paraoxon [30]. The biosensor was based on the measurement of the intensity of the light generated by ALP-catalyzed dephosphorylation of a chemiluminescent substrate, chloro 3-(4-methoxy spiro [1,2-dioxetane-3-2’-tricyclo-[3.3.1.1]-decan]-4- yl) phenyl phosphate.

A fluorescent ALP-based biosensor for the detection of organochlorine, pesticides (carbamate and fenitrothion), heavy metals and CN was also described [31]. ALP enzyme catalyzed the hydrolysis of 1-naphthyl phosphate to fluorescent 1-naphthol.

Mazzei and co-workers developed electrochemical ALP-based biosensors for the detection of malathion and 2,4-dichlorophenoxyacetic acid (2,4-D) by using 3-indoxyl phosphate, phenyl phosphate or ascorbate-2- phosphate as enzyme substrates [32]. Another electrochemical ALP-based biosensor was also described for the screening of several environmental pollutants. The biosensor was based on the entrapment of ALP in a hybrid sol-gel/chitosan film, deposited on the surface of a screen-printed electrode [33]. The substrate ascorbic acid 2-phosphate was catalyzed by the enyme to produce ascorbic acid, which was monitored by amperometry.

2.1.4. Peroxidase-Based Biosensors

Peroxidase molecules can be first oxidized by H2O2 and then reduced by phenolic compounds. This process involves two enzyme intermediates: compounds I and II (Figure 1). Phenolic compounds are thus oxidized to quinones or free radical products, able to be electrochemically reduced on the electrode surface. Several organic and inorganic compounds have been reported to inhibit the enzyme activity of peroxidase by coordinating compound I. A biosensor based on the inhibition of peroxidase was described for the detection of thiodicarb, a carbamate pesticide [34]. HRP was covalently bound on a gold electrode. In the presence of hydrogen peroxide, hydroquinone was oxidized by peroxidase to p-benzoquinone which could be electrochemically reduced to hydroquinone at a potential of –0.072 V vs Ag/AgCl. The presence of inhibitor compounds induced a decrease of the biosensor current response.

2.1.5. Acid Phosphatase

Acid phosphatase (AP) is reversibly inhibited by some pesticides. AP has been used with glucose oxidase (GOD) to develop a bienzymatic biosensor for the electrochemical detection of Malathion, methyl parathion and paraoxon [37]. Both enzymes were coupled on a commercial H2O2 sensing electrode. This system is based on the following reactions:

Figure 1. Scheme of the reactions occurring at the surface of a peroxidase-modified electrode. ox: oxidized form, red: reduced form [35,36].

2.2. Catalytic Biosensors

2.2.1. Organophosphorus Hydrolase (OPH)

OPH is an enzyme that hydrolyzes organophosphorus pesticides [38], such as parathion, methyl parathion [39] or paraoxon [40,41]. This enzyme hydrolyzes P-O, P-S and P-CN bonds generating two protons, able to be electrochemically detected, and an alcohol, which in many cases is chromophoric and/or electroactive.

However, these biosensors show lower sensitivity values and higher detection limits than cholinesterase-based biosensors. Moreover, they can only detect some organophosphorus (OP) compounds.

Table 3 summarizes the performances of some OPHbased biosensors reported in the literature.

2.2.2. Glutathion-S-Transferase

Glutathion-S-transferase (GST) was used to develop a fiber-optic biosensor for the detection of atrazine [42]. The enzyme was immobilized by cross-linking on a membrane that was supported on an inner glass disk by means of an intermediate binder sol-gel layer. Bromcresol green was incorparated in the sol-gel as pH indicator. GST catalyzed the nucleophile attack of GSH on atrazine, releasing H+. This pH variation was optically measured by colour changes of bromcresol green.

3. Whole Cell Biosensors

3.1. Microbial Biosensors

To develop a microbial biosensor, microorganisms have to be immobilized onto a transducer using different chemical (e.g. cross-linking) or physical techniques (e.g. entrapment) [43]. Microorganisms have several advantages

Table 3. Characteristics of hydrolase-based biosensors.

as sensing elements in the development of biosensors. They are able to metabolise a wide range of chemical compounds. The use of whole cells, as a source of intracellular enzymes, avoids expensive protocols of enzyme purification. The enzyme is maintained in its natural environment improving its stability and activity. The main limitation of the use of whole cells is the diffusion of substrate and products through the cell wall resulting in a slow response as compared to enzyme-based biosensors. To overcome this drawback, cells can be permeabilised [44].

3.1.1. Electrochemical Microbial Biosensors

3.1.1.1. Amperometric Detection

Amperometric microbial biosensors have been widely developed for the determination of biochemical oxygen demand (BOD) in order to measure biodegradable organic pollutants in aqueous samples. Most of BOD biosensors consist of a microbial film sandwiched between a porous cellulose membrane and a gas-permeable membrane. Organic substrates, present in wastewater samples, diffuse through the dialysis membrane and are assimilated by the immobilized microbial population, increasing the bacterial respiration rate. Therefore, less dissolved oxygen diffuses through the gas-permeable Teflon membrane to be detected by a Clark oxygen electrode [45]. Different microbial strains were used as biosensing element such as Arxula adeninivorans [46], Bacillus subtilis [47], Serratia marcescens [48] or yeast [49]. Single microorganisms metabolize a limited range of organic pollutants, which may result in an inaccurate estimation of BOD values. To overcome this problem, mixed cultures (e.g. Bacillus subtilis and Trichosporon cutaneum [50]) or activated sludges [51] were used.

Mulchandani’s group developed amperometric microbial biosensors for the determination of organophosphate pesticides with p-nitrophenyl substituent (e.g. paraoxon, methyl parathion, parathion, fenitrothion and ethyl pnitrophenol thiobenzenephosphonate (EPN)) [52]. These biosensors were based on the co-immobilization of microorganisms and OPH (free or expressed on the cell surface of other microorganisms). OPH hydrolyzes the pesticide and releases p-nitrophenol. Released p-nitrophenol can be oxidized by some microorganisms, such as or Pseudomonas putida JS444. Two detection strategies were used:

• OPH hydrolyzes the organophosphorus compounds to produce p-nitrophenol. Released p-nitrophenol was degraded by some bacteria, such as Pseudomonas putida JS444. This degradation resulted in electroactive compounds, amperometrically detected [53,54].

• The degradation of p-nitrophenol by some microbes, such as Arthrobacter sp. JS443, consumes oxygen. A Clark oxygen electrode was used to measure oxygen concentration changes [55-57].

3.1.1.2. Potentiometric Detection

Conventional potentiometric microbial biosensors have been developed using ion-selective electrodes (e.g. pH, ammonium) or gas sensing electrodes (e.g. pCO2) coated with an immobilized microbial layer. Assimilation of substrates by microbes causes changes in potential due to ion accumulation or depletion [43].

A potentiometric biosensor for the direct detection of paraoxon was based on the immobilization of recombinant E. Coli on a glass pH electrode. Bacteria was engineered to contain the opd gene that encodes the OPH enzyme [58]. Entrapped OPH-active bacteria hydrolyzed OP compounds producing two protons. The quantity of released H+ was correlated to the concentration of hydrolyzed paraoxon.

3.1.2. Optical Microbial Biosensors

Optical microbial biosensors allowing the detection of pollutants such as phenols and heavy metals have been developed [52,59]. However, only few optical microbial biosensors allowing the detection of pesticides have been reported. A disposable colorimetric microbial biosensor for the detection of methyl parathion pesticide was described [60]. Whole cells of Flavobacterium sp. were immobilized on a glass fiber filter paper. The OPH activity of Flavobacterium sp. hydrolyzed methyl parathion into p-nitrophenol that can be detected at 410 nm.

3.2. Plant Tissue and Photosynthesis-Based Biosensors

3.2.1. Plant Tissue-Based Biosensors

The use of plant tissue is an attractive alternative to enzymatic biosensors. Tissue that acts as enzyme source presents many advantages [61]:

• High stability and activity resulting from the maintenance of the enzyme in its natural environ-ment;

• Long lifetime of biosensors;

• High reproducibility of the experimental results;

• Availability and low price of a wide range of plant tissues;

• Avoidance of tedious and time-consuming enzyme extraction and purification steps;

• Presence of the required cofactors in the used tissue.

Planktonic algae have been widely used to develop biosensors for pollutants present in the aquatic ecosystems. Biosensors based on immobilized Chlorella vulgaris microalgae were reported [62-64]. Those biosensors were based on the inhibition of enzymes located on the external membrane, such as alkaline phosphatases and esterases, by heavy metals and pesticides.

3.2.2. Photosynthesis-Based Biosensors

Different types of photosynthetic materials were used as recognition element for the development of biosensors: whole cells (e.g. microalgae), chloroplasts or thylakoids and photosystem II (PS II) [65]. PS II is a supramolecular pigment-protein complex located in the thylakoid membrane. It catalyzes the light-induced transfer of electrons from water to plastoquinone in a process that evolved oxygen. The activity of PS II can be inhibited by several groups of herbicides and heavy metals [66].

The measurement of oxygen evolution using a Clarktype electrode is a standard procedure for the determination of the photosynthetic activity [61,67,68]. The incorporation of several types of photosystem II specific artificial electron acceptors as electroactive mediators allows to maximize the photosynthetic activity. Other biosensors are not based on the use of a Clark-type electrode. In these cases, alga were immobilized on the surface of ITO electrode [69] or SPE [70].

Optical photosynthesis-based biosensors have also been described based on the fluorescence induced by chlorophyll a. The light absorbed by chlorophyll molecules of PSII may be assimilated into the light reactions of the photosynthesis or may be released as fluorescence or thermal energy. Herbicides inhibit photosynthetic electron flow by blocking the PSII quinone binding site causing an increase in the chlorophyll fluorescence emission. Based on this principle, herbicide biosensors based on the measurement of the algal chlorophyll fluorescence at 682 nm (under 469 nm excitation light) were developed [71-73]. Recently, three microalgae species (Dictyosphaerium chlorelloides, Scenedesmus intermedius and Scenedesmus sp.) were entrapped within a silica matrix and the increase in the amount of chlorophyll fluorescence signal was used to quantify simazine [74].

4. Immunosensors

Immunosensors are characterized by the highly selective affinity interactions between immobilized antibodies (Ab) or antigens (Ag), on the transducer surface, and their specific analytes, Ag or Ab respectively [75-77]. Unlike enzyme-based biosensors, able to evaluate total toxicity, immuno-sensors are specific for a molecule.

Several immunosensors for pesticides detection have been described, based on electrochemical, optical, piezoelectric and mechanical transduction methods.

4.1. Electrochemical Immunosensors

Table 4 presents performance characteristics of some electrochemical immunosensors.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] D. Grieshaber, R. MacKenzie, J. V?ros and E. Reimhult, “Elec-trochemical Biosensors—Sensor Principles and Architectures,” Sensors, Vol. 8, No. 3, 2008, pp. 1400-1458. doi:10.3390/s8031400
[2] R. S. Freire, C. A. Pessao, L. D. Mello and L. T. Kubota, “Direct Electron Transfer: An Approach for Electro-chemical Biosensors with Higher Selectivity and Sensitivity,” Journal of Brazilian Chemical Society, Vol. 14, No. 2, 2003, pp. 230-243. doi:10.1590/S0103-50532003000200008
[3] D. R. Thévenot, K. Toth, R. A. Durst and G. S. Wilson, “Electrochemical Bio-sensors: Recommended Definitions and Classification,” Pure Applied Chemistry, Vol. 71, No. 12, 1999, pp. 2333-2348. doi:10.1016/S0956-5663(01)00115-4
[4] N. J. Ronkainen, H. B. Halsall and W. R. Heineman, “Electrochemical Biosensors,” Chemical Society Reviews, Vol. 39, No. 11, 2010, pp. 1747-1763. doi:10.1039/b714449k
[5] U. Yogeswaran and S.-M. Chen, “A Review on the Elec-trochemical Sensors and Biosensors Composed of Nanowires as Sensing Material,” Sensors, Vol. 8, No. 1, 2008, pp. 290-313. doi:10.3390/s8010290
[6] S. An-dreescu and J. L. Marty, “Twenty Years Research in Choli-nesterase Biosensors: From Basic Research to Practical Applications,” Biomolecular Engineering, Vol. 23, No. 1, 2006, pp. 1-15. doi:10.1016/j.bioeng.2006.01.001
[7] M. D. Luque de Castro and M. C. Herrera, “Enzyme_ Inhibition-Based Bio-sensors and Biosensing Systems: Questionable Analytical De-vices,” Biosensors and Bioelectronics, Vol. 18, No. 2-3, 2003, pp. 279-294. doi:10.1016/S0956-5663(02)00175-6
[8] N. Jaffrezic-Renault, “New Trends in Biosensors for Organophosphorus Pesticides,” Sensors, Vol. 1, No. 2, 2001, pp. 60-74. doi:10.3390/s10100060
[9] S. Liu, L. Yuan, X. Yue, Z. Zheng and Z. Tang, “Recent Advances in Nanosensors for Organophosphates Pesticide Detection,” Advanced Powder Tech-nology, Vol. 19, No. 5, 2008, pp. 419-441. doi:10.1016/S0921-8831(08)60910-3
[10] B. Prieto-Simon, M. Campas, S. Andreescu and J. L. Marty, “Trends in Flow-Based Biosensing for Pesticide Assessment,” Sensors, Vol. 6, No. 10, 2006, pp. 1161- 1186. doi:10.3390/s6101161
[11] B. Liu, Y.-H. Yang, Z.-Y. Wu, H. Wang, G.-L. Shen and R.-Q. Yu, “A Po-tentiometric Acetylcholinesterase Bio-sensor Based on Plasma-Polymerized Film,” Sensors and Actuators B, Vol. 104, No. 2, 2005, pp. 186-190. doi:10.1016/j.snb.2004.04.093
[12] V. G. Andreou and Y. D. Clonis, “A Portable Fiber-Optic Pesticide Biosensor Based On Immobilized Cholinesterase and Sol-Gel Entrapped Bromocresol Purple for In-Field Use,” Biosensors and Bioelectronics, Vol. 17, No. 1-2, 2002, pp. 61-69. doi:10.1016/S0956-5663(01)00261-5
[13] F. C. Wong, M. Ahmad, L. Y. Heng and L. B. Peng, “An Optical Biosensor for Dichlovos Using Stacked Sol-Gel Films Containing Acetylcho-linesterase and a Lipophilic Chromoionophore,” Talanta, Vol. 69, No. 4, 2006, pp. 888-893. doi:10.1016/j.talanta.2005.11.034
[14] H. C. Tsai and R. A. Doong, “Simultaneous Determina- tion of Ph, Urea, Acetylcholine and Heavy Metals Using Array-Based Enzymatic Optical Biosensor,” Biosensors and Bioelectronics, Vol. 20, No. 9, 2005, pp. 1796-1804. doi:10.1016/j.bios.2004.07.008
[15] C. La Rosa, F. Pariente, L. Hernandez and E. Lorenzo, “Amperometric Flow-Through Biosensor for the Determination of Pesticides,” Analytica Chimica Acta, Vol. 308, No. 1-3, 1995, pp. 129-136. doi:10.1016/0003-2670(94)00529-U
[16] C. La Rosa, F. Pariente, L. Hernandez and E. Lorenzo, “Determination of Organophosphorus and Carbamic Pes- ticides with an Acetylcholinesterase Amperometric Bio-sensor Using 4-Aminophenyl Acetate as Substrate,” Analytica Chimica Acta, Vol. 295, No. 3, 1994, pp. 273-282. doi:10.1016/0003-2670(94)80232-7
[17] S. Andreescu, T. Noguer, V. Magearu and J. L. Marty, “Screen-Printed Electrode Based on AChE for the Detec- tion of Pesticides in Presence of Organic Solvents,” Talanta, Vol. 57, No. 1, 2002, pp. 169-176. doi:10.1016/S0039-9140(02)00017-6
[18] S. Andreescu, A. Avramescu, C. Bala, V. Magearu and J. L. Marty, “Detection of Organophosphorus Insecticides with Immobilized Acetylcholinesterase—Comparative Study of Two Enzyme Sensors,” Analytical and Bioanalytical Chemistry, Vol. 374, No. 1, 2002, pp. 39-45. doi:10.1007/s00216-002-1442-4
[19] S. U padhyay, G. R. Rao, M. K. Sharma, B. K. Bhattacharya, V. K. Rao and R. Vijayaraghavan, “Immobilization of Acetylcholineesterase-Choline Oxidase on a Gold-Platinum Bimetallic Nanoparticles Modified Glassy Car- bon Electrode for the Sensitive Detection of Organo- phosphate Pesticides, Carbamates and Nerves Agents,” Biosensors and Bioelectronics, Vol. 25, No. 4, 2009, pp. 832-838. doi:10.1016/j.bios.2009.08.036
[20] L. Campanella, M. Achilli, M. P. Sammartino and Tomassetti, “Butyrylcholine Enzyme Sensor for Determining Organophosphorus Inhibitors,” Journal of Electroanalytical Chemistry, Vol. 321, No. 2, 1991, pp. 237-249. doi:10.1016/0022-0728(91)85599-K
[21] N. G. Karousos, S. Aouabdi, A. S. Way and S. M. Reddy, “Quartz Crystal Microbalance Determination of Organophosphorus and Carbamate Pesticides,” Analytica Chimica Acta, Vol. 469, No. 2, 2002, pp. 189-196. doi:10.1016/S0003-2670(02)00668-2
[22] M. Campas, B. Prieto-Simon and J. L. Marty, “A Review of the Use of Genetically Engineered Enzymes in Electrochemical Biosensors,” Seminars in Cell and Developmental Biology, Vol. 20, No. 1, 2009, pp. 3-9. doi:10.1016/j.semcdb.2009.01.009
[23] G. Valdes-Ramirez, D. Fournier, M. T. Ramirez-Silva and J. L. Marty, “Sensitive Amperometric Biosensor for Dichlorovos Quantification: Application to Detection of Residues on Apple Skin,” Talanta, Vol. 74, No. 4, 2008, pp. 741-746. doi:10.1016/j.talanta.2007.07.004
[24] F. De Lima, B. Lucca, A. M. J. Barbosa, V. S. Ferreira, S. K. Moccelini, A. C. Franzoi and I. C. Vieira, “Biosensor Based on Pequi Polyphenol Oxidase Immobilized on Chitosan Crosslinked with Cyanuric Chloride for Thiodi-carb Determination,” Enzyme and Microbial Technology, Vol. 47, No. 4, 2010, pp. 153-158. doi:10.1016/j.enzmictec.2010.05.006
[25] J. C. Vidal, S. Esteban, J. Gil and J. R. Castillo, “A Comparative Study of Immobilization Methods of a Ty-rosinase Enzyme on Electrodes and Their Application to the Detection of Dichlorvos Organophosphorus Insecticide,” Talanta, Vol. 68, No. 3, 2006, pp. 791-799. doi:10.1016/j.talanta.2005.06.038
[26] Y. D. de Albuquerque and L. F. Ferreira, “Amperometric Biosensing of Carbamate and Organophosphate Pesti- cides Utilizing Screen-Printed Tyrosinase-Modified Electrodes,” Analytica Chimica Acta, Vol. 596, No. 2, 2007, pp. 210-221. doi:10.1016/j.aca.2007.06.013
[27] G.-Y. Kim, M.-S. Kang, S. J. and S.-H. Moon, “Sub-strate-Bound Tyrosinase Electrode Using Gold Nanoparticles Anchored to Pyrroloquinoline Quinone for a Pesticide Biosensor,” Sensors and Actuators B, Vol. 133, No. 1, 2008, pp. 1-4. doi:10.1016/j.snb.2008.01.055
[28] G. Y. Kim, J. Shim, M. S. Kang and S. H. Moon, “Optimized Coverage of Gold Nanoparticles at Tyrosinase Electrode for Measurement of a Pesticide in Various Water Samples,” Journal of Hazardous Materials, Vol. 156, No. 1-3, 2008, pp. 141-147. doi:10.1016/j.jhazmat.2007.12.007
[29] L. Campanella, D. Lelo, E. Martini and M. Tomassetti, “Organophosphorus and Carbamate Pesticide Analysis Using an Inhibition Tyrosinase Organic Phase Enzyme Sensor; Comparison by Butyrylcholi-nesterase + Choline Oxidase Opee and Application to Natural Waters,” Analytica Chimica Acta, Vol. 587, No. 1, 2007, pp. 22-32. doi:10.1016/j.aca.2007.01.023
[30] M. S. Ayyagari, S. Kamtekar, R. Pande, K. A. Marx, J. Kumar, S. K. Tripathy and D. L. Kaplan, “Biosensors for Pesticide Detection Based on Alkaline Phosphatase-Catalyzed Chemiluminescence,” Materials Science and Engineering: C, Vol. 2, No. 4, 1995, pp. 191-196. doi:10.1016/0928-4931(95)00077-1
[31] F. Garcia Sanchez, A. Navas Diaz, M. C. Ramos Peinado and C. Belledone, “Free and Sol-Gel Immobilized Alka- line Phosphatase-Based Biosensor for the Determination of Pesticides and Inorganic Compounds,” Analytica Chimica Acta, Vol. 484, No. 1, 2003, pp. 45-51. doi:10.1016/S0003-2670(03)00310-6
[32] F. Mazzei, F. Botrè, S. Montilla, R. Pilloton, E. Podesta and C. Botrè, “Alkaline Phosphatase Inhibition Based Electrochemical Sensors for the Detection of Pesticides,” Journal of Electroanalytical Chemistry, Vol. 574, No. 1, 2004, pp. 95-100. doi:10.1016/j.jelechem.2004.08.004
[33] L. K. Shyuan, L. Y. Heng, M. Ahmad, S. A. Aziz and Z. Ishak, “Evaluation of Pesticide and Heavy Mtal Toxicity Using Immobilised Enzyme Alkaline Phosphatase with an Electrochemical Biosensor,” Asian Journal of Bio-chemistry, Vol. 3, No. 6, 2008, pp. 359-365. doi:10.3923/ajb.2008.359.365
[34] S. K. Moccelini, I. C. Vieira, F. De Lima, B. Lucca, A. M. J. Barbosa and V. S. Ferreira, “Determination of Thiodicarb Using a Biosensor Based on Alfalfa Sprout Peroxi-dase Immobilized in Self-Assembled Monolayers,” Talanta, Vol. 82, No. 1, 2010, pp. 164-170. doi:10.1016/j.talanta.2010.04.015
[35] S. Yang, Y. Li, X. Jiang, Z. Chen and X. Lin, “Horseradish Peroxidase Biosensor Based on Layer-by-Layer Tech- nique for the Determination of Phenolic Compounds,” Sensors and Actuators B, Vol. 114, No. 2, 2006, pp. 774-780. doi:10.1016/j.snb.2005.07.035
[36] S. Yang, Z. Chen, X. Jin and X. Lin, “HRP Biosensor Based on Sugar-Lectin Biospecific Interactions for the Determination of Phenolic Compounds,” Electrochimica Acta, Vol. 52, No. 1, 2006, pp. 200-205. doi:10.1016/j.electacta.2006.04.059
[37] F. Mazzei, F. Botrè and C. Botrè, “Acid Phosphatase/Glu-cose Oxidase-Based Biosensors for the Determination of Pesticides,” Analytica Chimica Acta, Vol. 336, No. 1, 1996, pp. 67-75. doi:10.1016/S0003-2670(96)00378-9
[38] A. Mulchandani, W. Chen, P. Mulchandani, J. Wang and K. R. Rogers, “Biosensors for Direct Determination of Organophosphate Pesticides,” Biosensors and Bioelectronics, Vol. 16, No. 4, 2001, pp. 225-230. doi:10.1016/S0956-5663(01)00126-9
[39] D. Du, W. Chen, W. Zhang, D. Liu, H. Li and Y. Lin, “Covalent Coupling of Organophosphorus Hydrolase Loaded Quantum Dots to Carbon Nanotube. Au Nano- composite for Enhanced Detection of Methyl Parathion,” Biosensors and Bioelectronics, Vol. 25, No. 6, 2010, pp. 1370-1375. doi:10.1016/j.bios.2009.10.032
[40] J. H. Lee, J. Y. Park, K. Min, H. J. Cha, S. S. Choi and Y. J. Yoo, “A Novel Organophosphorus Hydrolase-Based Biosensor Using Mesoporous Carbons and Carbon Black for The Detection Of Organophosphate Nerve Agents,” Bio-sensors and Bioelectronics, Vol. 25, No. 7, 2010, pp. 1566-1570. doi:10.1016/j.bios.2009.10.013
[41] V. A. Pedrosa, S. Paliwal, S. Balasubramanian, D. Nepal, V. Davis, J. Wild, E. Ramanculov and A. Simonian, “Enhanced Stability of Enzyme Organophosphate Hydrolase Interfaced on the Carbon Nanotubes,” Colloids and Surfaces B Biointerfaces, Vol. 77, No. 1, 2010, pp. 69-74. doi:10.1016/j.colsurfb.2010.01.009
[42] V. G. Andreou and Y. D. Clonis, “Novel Fiber-Optic Biosensor Based on Immobilized Glutathione S-Trans-ferase and Sol-Gel Entrapped Bromcresol Green for the Determination of Atrazine,” Analytica Chimica Acta, Vol. 460, No. 2, 2002, pp. 151-161. doi:10.1016/S0003-2670(02)00250-7
[43] Y. Lei, W. Chen and A. Mulchandani, “Microbial Bio- sensors,” Analytica Chimica Acta, Vol. 568, No. 1-2, 2006, pp. 200-210. doi:10.1016/j.aca.2005.11.065
[44] S. F. D’Souza, “Microbial Biosensors,” Biosensors and Bioelectronics, Vol. 16, 2001, pp. 337-353. doi:10.1016/S0956-5663(01)00125-7
[45] J. Liu and B. Mattiasson, “Microbial BOD Sensors for Wastewater Analysis,” Water Research, Vol. 36, No. 15, 2002, pp. 3786-3802. doi:10.1016/S0043-1354(02)00101-X
[46] C. Chan, M. Lehmann, K. Chan, P. Chan, C. Chan, B. Gruendig, G. Kunze and R. Renneberg, “Designing an Amperometric Thick-Film Microbial BOD Sensor,” Bio-sensors and Bioelectronics, Vol. 15, No. 7-8, 2000, pp. 343-353. doi:10.1016/S0043-1354(02)00101-X
[47] K. Riedel, R. Renneberg, M. Kühn and F. Scheller, “A Fast Estimation of Biochemical Oxygen Demand Using Microbial Sensors,” Applied Microbiology and Biotechnology, Vol. 28, No. 3, 1988, pp. 316-318. doi:10.1007/BF00250463
[48] M. N. Kim and H. S. Kwon, “Biochemical Oxygen Demand Sensor Using Serratia marcescens LSY 4,” Bio- sensors and Bioelectronics, Vol. 14, No. 1, 1999, pp. 1-7. doi:10.1016/S0956-5663(98)00107-9
[49] M. Hikuma, H. Suzuki, T. Yasuda, I. Karube and S. Su- zuki, “Amperometric Estimation of BOD by Using Living Immobilized Yeast,” European Journal of Applied Microbiology and Biotechnology, Vol. 8, No. 4, 1979, pp. 289-297. doi:10.1007/BF00508793
[50] J. Jia, M. Tang, X. Chen, L. Qi and S. Dong, “Co-Immo-bilized Microbial Biosensor for Bod Estimation Based on Sol-Gel Derived Composite Material,” Biosensors and Bioelectronics, Vol. 18, No. 8, 2003, pp. 1023-1029. doi:10.1016/S0956-5663(02)00225-7
[51] J. Liu, G. Olsson and B. Mattiasson, “Short-Term BOD (BODst) as a Parameter for On-Line Monitoring of Bio- logical Treatment Process Part I. A Novel Design of BOD Biosensor for Easy Renewal of Bio-Receptor,” Biosensors and Bioelectronics, Vol. 20, No. 3, 2004, pp. 562- 570. doi:10.1016/j.bios.2004.03.008
[52] L. Su, W. Jia, C. Hou and Y. Lei, “Microbial Biosensors: A Review,” Biosensors and Bioelectronics, Vol. 26, No. 5, 2011, pp. 1788-1799. doi:10.1016/j.bios.2010.09.005
[53] P. Mulchandani, C. M. Hangarter, Y. Lei, W. Chen and A. Mulchandani, “Amperometric Microbial Biosensor for p- Nitrophenol Using Moraxella sp.-Modified Carbon Paste Electrode,” Biosensors and Bioelectronics, Vol. 21, No. 12, 2005, pp. 523-527. doi:10.1016/j.bios.2004.11.011
[54] Y. Lei, P. Mulchandani, W. Chen, J. Wang and A. Mul-chandani, “Whole Cell-Enzyme Hybrid Amperometric Biosensor for Direct Determination of Organophosphorous Nerve Agents with p-Nitrophenyl Substituent,” Bio-technology and Bioengineering, Vol. 85, No. 7, 2004, pp. 706-712. doi:10.1002/bit.20022
[55] Y. Lei, P. Mulchandani, W. Chen and A. Mulchandani, “Direct Determination of p-Nitrophenyl Substituent Organophosphorus Nerve Agents Using a Recombinant Pseu- domonas putida JS444-Modified Clark Oxygen Electrode,” Journal of Agricultural and Food Chemistry, Vol. 53, 2005, pp. 524-527. doi:10.1021/jf048943t
[56] Y. Lei, P. Mulchandani, W. Chen and A. Mulchandani, “Biosensor for Direct Determination of Fenitrothion and EPN Using Recombinant Pseudomonas putida JS444 with Surface Expressed Organophosphorus Hydrolase. 1. Modified Clark Oxygen Electrode,” Sensors, Vol. 6, No. 4, 2006, pp. 466-472. doi:10.3390/s6040466
[57] P. Mulchandani, W. Chen and A. Mulchandani, “Micro-bial Biosensor for Direct Determination of Nitrophenyl-Substituted Organophosphate Nerve Agents Using Genetically Engineered Moraxella sp.,” Analytica Chimica Acta, Vol. 568, No. 1-2, 2006, pp. 217-221. doi:10.1016/j.aca.2005.11.063
[58] E. I. Rainina, E. N. Efremenco, S. D. Varfolomeyev, A. L. Simonian and J. R. Wild, “The Development Of A New Biosensor Based on Recombinant E. coli for the Direct Detection of Organophosphorus Neurotoxins,” Biosen-sors and Bioelectronics, Vol. 11, No. 10, 1996, pp. 991- 1000. doi:10.1016/0956-5663(96)87658-5
[59] F. Lagarde and N. Jaffrezic-Renault, “Cell-Based Elec- trochemical Biosensors for Water Quality Assessment,” Analytical and Bioanalytical Chemistry, Vol. 400, No. 4, 2011, pp. 947-964. doi:10.1007/s00216-011-4816-7
[60] J. Kumar, S. K. Jha and S. F. D’Souza, “Optical Micro- bial Biosensor for Detection of Methyl Parathion Pesticide Using Flavobacterium sp. Whole Cells Adsorbed on Glass Fiber Filters as Disposable Biocomponent,” Bio-sensors and Bioelectronics, Vol. 21, No. 11, 2006, pp. 2100-2105. doi:10.1016/j.bios.2005.10.012
[61] M. Campas, R. Carpentier and R. Rouillon, “Plant-Tissue-and Photosynthesis-Based Biosensors,” Bio-techology Advances, Vol. 26, No. 4, 2008, pp. 370-378. doi:10.1016/j.biotechadv.2008.04.001
[62] C. Chouteau, S. V. Dzyadevych, J.-M. Chovelon and C. Durrieu, “Development of Novel Conductometric Bio- sensors Based on Immobilised Whole Cell Chlorella vul- garis Microalgae,” Biosensors and Bioelectronics, Vol. 19, No. 9, 2004, pp. 1089-1096. doi:10.1016/j.bios.2003.10.012
[63] C. Chouteau, S. V. Dzyadevych, C. Durrieu and J.-M. Chovelon, “A Bi-Enzymatic Whole Cell Conductometric Biosensor for Heavy Metal Ions and Pesticides Detection in Water Samples,” Biosensors and Bioelectronics, Vol. 21, No. 2, 2005, pp. 273-281. doi:10.1016/j.bios.2004.09.032
[64] H. Guedri and C. Durrieu, “A Self-Assembled Monolay- ers Based Conductimetric Algal Whole Cell Biosensor for Water Monitoring,” Microchimica Acta, Vol. 163, No. 3-4, 2008, pp. 179-184. doi:10.1007/s00604-008-0017-2
[65] R. Rouillon, S. A. Piletsky, E. V. Piletska, P. Euzet and R. Carpentier, “Comparison of the Immobilization Techniques for Photosystem II,” In: M. T. Giardi, E. V. Pilet- ska, Eds., Biotechnological Applications of Photosynthesis Proteins: Biochips, Biosensors and Biodevices, Lan-des Bioscience, Georgetown, 2006, pp. 73-83.
[66] M. T. Giardi and E. Pace, “Photosystem II-Based Bio-sensors for the Detection Of Photosynthetic Herbicides,” In: M. Giardi and E. V. Piletska, Eds., Biotechnological Applications of Photosynthetic Proteins; Biochips, Bio-sensors and Biodevices, Landes Bioscience, Georgetown, 2006, pp. 147-154. doi:10.1007/978-0-387-36672-2_13
[67] R. Rouillon, J.-J. Mestres and J. L. Marty, “Entrapment of Chloroplasts and Thylakoids in Polyvinylalcohol-SbQ. Optimization of Membrane Preparation and Storage Conditions,” Analytica Chimica Acta, Vol. 311, No. 3, 1995, pp. 437-442. doi:10.1016/0003-2670(95)00031-T
[68] M. Koblizek, J. Masojidek, J. Komenda, T. Kucera, R. Pilloton, A. K. Mattoo and M. T. Giardi, “A Sensitive Photosystem II-Based Biosensor for Detection of a Class of Herbicides,” Biotechnology Bioengeering, Vol. 60, No. 6, 1998, pp. 664-669. doi:10.1002/(SICI)1097-0290
[69] I. Shitanda, K. Takada, T. Sakai and T. Tatsuma, “Compact Amperometric Algal Biosensors for the Evaluation of Water Toxicity,” Analytica Chimica Acta, Vol. 530, No. 2, 2005, pp. 191-197. doi:10.1016/j.aca.2004.09.073
[70] I. Shitanda, S. Takamatsu, K. Watanabe and M. Itagaki, “Amperometric Screen-Printed Algal Biosensor with Flow Injection Analysis System for Detection of Environmental Toxic Compounds,” Electrochimica Acta, Vol. 54, No. 21, 2009, pp. 4933-4936. doi:10.1016/j.electacta.2009.04.005
[71] H. Nguyen-Ngoc and C. Tran-Minh, “Fluorescent Bio-sensor Using Whole Cells in an Inorganic Translucent Matrix,” Analytica Chimica Acta, Vol. 583, No. 1, 2007, pp. 161-165. doi:10.1016/j.aca.2006.10.005
[72] C. Védrine, J. C. Leclerc, C. Durrieu and C. Tran-Minh, “Optical Whole-Cell Biosensor Using Chlorella Vulgaris Designed for Monitoring Herbicides,” Biosensors and Bioelectronics, Vol. 18, No. 4, 2003, pp. 457-463. doi:10.1016/S0956-5663(02)00157-4
[73] A. Ventrella, L. Catucci and A. Agostiano, “Herbicides Affect Fluorescence and Electron Transfer Activity of Spinach Chloroplasts, Thylakoid Membranes and Isolated Photosystem II,” Bioelectrochemistry, Vol. 79, No. 1, 2010, pp. 43-49. doi:10.1016/j.bioelechem.2009.10.008
[74] E. Pena-Vazquez, E. Maneiro, C. Perez-Conde, M. C. Moreno-Bondi and E. Costas, “Microalgae Fiber Optic Biosensors for Herbicide Monitoring Using Sol-Gel Tech- nology,” Biosensors and Bioelectronics, Vol. 24, No.12, 2009, pp. 3538-3543. doi:10.1016/j.bios.2009.05.013
[75] X. Jiang, D. Li, X. Xu, Y. Ying, Y. Li, Z. Ye and J. Wang, “Immunosensors for Detection of Pesticides Residues,” Biosensors and Bioelectronics, Vol. 23, No. 11, 2008, pp. 1577-1587. doi:10.1016/j.bios.2008.01.035
[76] C.R. Suri, R. Boro, Y. Nangia, S. Gandhi, P. Sharma, N. Wangoo, K. Rajesh and G. S. Shekhawat, “Immunoanalytical Techniques for Analyzing Pesticides in the Environment,” Trends in Analytical Chemistry, Vol. 28, No. 1, 2009, pp. 29-39. doi:10.1016/j.trac.2008.09.017
[77] E. Mallat, D. Barcelo, C. Barzen, G. Gauglitz and R. Abuknesha, “Immunosensors for Pesticide Determination in Natural Waters,” Trends in Analytical Chemistry, Vol. 20, No. 3, 2001, pp. 124-132. doi:10.1016/S0165-9936(00)00082-0
[78] F. F. Bier, E. Ehrentreich-F?rster, R. D?lling, A. V. Ere-menko and F. W. Scheller, “A Redox Label Immunosen- sor on Basis of a Bi-Enzyme Electrode,” Analytica Chimica Acta, Vol. 344, No. 1-2, 1997, pp. 119-124. doi:10.1016/S0003-2670(97)00050-0
[79] T. Kalab and P. Skadal, “A Disposable Amperometric Immunosensor for 2,4-Dichlorophenoxyacetic Acid,” Analytica Chimica Acta, Vol. 304, No. 3, 1995, pp. 361-368. doi:10.1016/0003-2670(94)00641-X
[80] P. Skadal and T. Kalab, “A Multichannel Immunochemi- cal Sensor for the Determination of 2,4-Dichlorophenoxya-cetic Acid,” Analytica Chimica Acta, Vol. 316, No. 1, 1995, pp. 73-78. doi:10.1016/0003-2670(95)00342-W
[81] S. Kr?ger, S. J. Setford and A. P. F. Turner, “Immunosensor for 2,4-Dichlorophenoxyacetic Acid in Aqueous/Organic Solvents Soil Extracts,” Analytical Chemistry, Vol. 70, No. 23, 1998, pp. 5047-5053. doi:10.1021/ac9805100
[82] K. Grennan, G. Strachan, A. J. Porter, A. Killard and M. R. Smyth, “Atrazine Analysis Using an Amperometric Immunosensor Based on Single-Chain Antibody Frag- ments and Regeneration-Free Multi-Calibrant Measure- ment,” Analytica Chimica Acta, Vol. 500, No. 1-2, 2003, pp. 287-298. doi:10.1016/S0003-2670(03)00942-5
[83] E. Valera, D. Muniz and A. Rodriguez, “Fabrication of Flexible Interdigitated μ-Electrodes (FIDμEs) for the Development of a Conductimetric Immunosensor for Atrazine Detection Based on Antibodies Labelled with Gold Nanopar- ticles,” Microelectronic Engineering, Vol. 87, No. 2, 2010, pp. 167-173. doi:10.1016/j.mee.2009.07.001
[84] E. Valera, J. Ramon-Azcon, A. Barranco, B. Alfaro, F. Sanchez-Baeza, M. P. Marco and A. Rodriguez, “Determination of Atrazine Residues in Red Wine Samples. A Conductimetric Solution,” Food Chemistry, Vol. 122, No. 3, 2010, pp. 888-894. doi:10.1016/j.foodchem.2010.03.030
[85] E. Valera, J. Ramon-Azcon, F. J. Sanchez, M. P. Marco and A. Rodriguez, “Conductimetric Immunosensor for Atrazine Detection Based on Antibodies Labelled with Gold Nanoparticles,” Sensors and Actuators B, Vol. 134, No. 1, 2008, pp. 95-103. doi:10.1016/j.snb.2008.04.023
[86] Y. V. Plekhanova, A. N. Reshetilov, E. V. Yazynina, A. V. Zherdev and B. B. Dzantiev, “A New Assay Format for Electrochemical Immunosensors: Polyelectrolyte- Based Separation On Membrane Carriers Combined with Detection of Peroxidase Activity by pH-Sensitive Field-Effect Transistor,” Biosensors and Bioelectronics, Vol. 19, No. 2, 2003, pp. 109-114. doi:10.1016/S0956-5663(03)00176-3
[87] M. F. Yulaev, R. A. Sidtikov, N. M. Dmitrieva, E. V. Yazynima, A. V. Zherdev and B. B. Dzantiev, “Devel- opment of a Potentiometric Immunosensor for Herbicide Simazine and Its Application for Food Testing,” Sensors and Actuators B, Vol. 75, No. 1-2, 2001, pp. 129-135. doi:10.1016/S0925-4005(01)00551-2
[88] L. Mosiello, C. Laconi, M. Del Gallo, C. Ercole and A. Lepidi, “Development of a Monoclonal Antibody Based Potentiometric Biosensor for Terbuthylazine Detection,” Sensors and Actuators B, Vol. 95, No. 1-3, 2003, pp. 315- 320. doi:10.1016/S0925-4005(03)00431-3
[89] H. B. Fredj, S. Helali, Z. Sassi, N. Jaffrezic-Renault and A. Abdelghani, “Polyaniline Based Immunosensor for Atrazine Sensing,” Sensor Letters, Vol. 7, No. 5, 2009, pp. 661- 666. doi:10.1166/sl.2009.1126
[90] A. Rodriguez, E. Valera, J. Ramon-Azcon, F. J. Sanchez, M. P. Marco and L. M. Castaner, “Single Frequency Impedimetric Immunosensor for Atrazine Detection,” Sensors and Actuators B, Vol. 129, No. 2, 2008, pp. 921-928. doi:10.1016/j.snb.2007.10.003
[91] E. Valera, J. Ramon-Azcon, A. Rodriguez, L. M. Casta-ner, F. J. Sanchez and M. P. Marco, “Impedimetric immunosensor for Atrazine Detection Using Interdigitated μ-Electrode (IDμE’s),” Sensors and Actuators B, Vol. 125, No. 2, 2007, pp. 526-537. doi:10.1016/j.snb.2007.02.048
[92] J. Ramon-Azcon, E. Valera, A. Rodriguez, A. Barranco, B. Alfaro, F. Sanchez-Baeza and M. P. Marco, “An Im-pedimetric Immunosensor Based on Interdigitated Micro- electrodes (IDμE) for the Determination of Atrazine Residues in Food Samples,” Biosensors and Bioelectronics, Vol. 23, No. 9, 2008, pp. 1367-1373. doi:10.1016/j.bios.2007.12.010
[93] R. E. Ionescu, C. Gondran, L. Bouffier, N. Jaffrezic-Renault, C. Martelet and S. Cosnier, “Label-Free Impedimetric Immunosensor for Sensitive Detection of Atrazine,” Elec-trochimica Acta, Vol. 55, No. 21, 2010, pp. 6228-6232. doi:10.1016/j.electacta.2009.11.029
[94] C. Esseghaier, S. Helali, H. Fredj, A. Tlili and A. Abdel- ghani, “Polypyrrole-Neutravidin Layer for Impedimetric Biosensor,” Sensors and Actuators B, Vol. 131, No. 2, 2008, pp. 584-589. doi:10.1016/j.snb.2007.12.043
[95] S. Helali, C. Martelet, A. Abdelghani, M. A. Maaref and N. Jaffrezic-Renault, “A Disposable Immunomagnetic Electrochemical Sensor Based on Functionalised Magnetic Beads on Gold Surface for the Detection of Atrazine,” Electrochimica Acta, Vol. 51, No. 24, 2006, pp. 5182- 5186. doi:10.1016/j.electacta.2006.03.086
[96] B. Corry, J. Uilk and C. Crawley, “Probing Direct Binding Affinity in Electrochemical Antibody-Based Sensors,” Analytica Chimica Acta, Vol. 496, No. 1-2, 2003, pp. 103-116. doi:10.1016/j.aca.2003.01.001
[97] S. Hleli, C. Martelet, A. Abdelghani, N. Burais and N. Jaffrezic-Renault, “Atrazine Analysis Using an Impedi-metric Immunosensor Based on Mixed Biotinylated Self- Assembled Monolayer,” Sensors and Actuators B, Vol. 113, No. 2, 2006, pp. 711-717. doi:10.1016/j.snb.2005.07.023
[98] J. Homola, S. S. Yee and G. Gauglitz, “Surface Plasmon Resonance Sensors: Review,” Sensors and Actuators B, Vol. 54, No. 1-2, 1999, pp. 3-15. doi:10.1016/S0925-4005(98)00321-9
[99] M. Farre, E. Martinez, J. Ramon, A. Navarro, J. Radjeno- vic, E. Mauriz, L. Lechuga, M. P. Marco and D. Barcelo, “Part per Trillion Determination of Atrazine in Natural Water Samples by a Surface Plasmon Resonance Im- munosensor,” Analytical and Bioanalytical Chemistry, Vol. 388, No. 1, 2007, pp. 207-214. doi:10.1007/s00216-007-1214-2
[100] E. Mauriz, A. Calle, J. J. Manclus, A. Montoya and L. M. Lechuga, “Multi-Analyte SPR Immunoassays for Envi- ronmental Biosensing of Pesticides,” Analytical and Bio- analytical Chemistry, Vol. 387, No. 4, 2006, pp. 1449- 1458. doi:10.1007/s00216-006-0800-z
[101] E. Mauriz, A. Calle, A. Abad, A. Montoya, A. Hildebrandt, D. Barcelo and L. M. Lechuga, “Determination of Car0 baryl in Natural Water Samples by a Surface Plasmon Resonance Flow-Through Immunosensor,” Biosensors and Bioelectronics, Vol. 21, No. 11, 2006, pp. 2129-2136. doi:10.1016/j.bios.2005.10.013
[102] E. Mauriz, A. Calle, J. J. Manclus, A. Montoya, A. M. Escuela, J. R. Sendra and L. M. Lechuga, “Single and Multi-Analyte Surface Plasmon Resonance Assays for Simultaneous Detection Of Cholinesterase Inhibiting Pesticides,” Sensors and Actuators B, Vol. 118, No. 1-2, 2006, pp. 399-407. doi:10.1016/j.snb.2006.04.085
[103] E. Mauriz, A. Calle, L. M. Lechuga, J. Quintana, A. Montoya and J. J. Manclus, “Real-Time Detection of Chlorpyrifos at Part Per Trillion Levels in Ground, Surface and Drinking Water Samples by a Portable Surface Plasmon Resonance Immunosensor,” Analytica Chimica Acta, Vol. 561, No. 1-2, 2006, pp. 40-47. doi:10.1016/j.aca.2005.12.069
[104] E. Mauriz, A. Calle, A. Montoya and L. M. Lechuga, “Determination of Environmental Organic Pollutants with a Portable Optical Immunosensor,” Talanta, Vol. 69, No. 2, 2006, pp. 359-364. doi:10.1016/j.talanta.2005.09.049
[105] S. J. Kim, K. V. Gobi, H. Tanaka, Y. Shoyama and N. Miura, “A Simple and Versatile Self-Assembled Monolayer Based Surface Plasmon Resonance Immunosensor for Highly Sensitive Detection of 2,4-D from Natural Water Resources,” Sensors and Actuators B, Vol. 130, No. 1, 2008, pp. 281-289. doi:10.1016/j.snb.2007.08.023
[106] K. V. Gobi, S. J. Kim, H. Tanaka, Y. Shoyama and N. Miura, “Novel Surface Plasmon Resonance (SPR) Immunosensor Based on Monomolecular Layer of Physically-Adsorbed Ovalbumin Conjugate for Detection of 2,4-Dichlorophenoxyacetic Acid and Atomic Force Microscopy Study,” Sensors and Actuators B, Vol. 123, No. 1, 2007, pp. 583-593. doi:10.1016/j.snb.2006.09.056
[107] K. V. Gobi, H. Tanaka, Y. Shoyama and N. Miura, “Highly Sensitive Regenerable Immunosensor for Label- Free Detection of 2,4-Dichlorophenoxyacetic Acid at ppb Levels by Using Surface Plasmon Resonance Imaging,” Sensors and Actuators B, Vol. 111-112, 2005, pp. 562- 571. doi:10.1016/j.snb.2005.03.118
[108] S. J. Kim, K. V. Gobi, H. Iwasaka, H. Tanaka and N. Miura, “Novel Miniature SPR Immunosensor Equipped with All-in-One Multichannel Sensor Chip for Detecting Low-Molecular-Weight Analytes,” Biosensors and Bio- electronics, Vol. 23, No. 5, 2007, pp. 701-707. doi:10.1016/j.bios.2007.08.010
[109] C. M. Cummins, M. E. Koivunen, A. Stephanian, S. J. Gee, B. D. Hammock and I. M. Kennedy, “Application of Europium(III) Chelate-Dyed Nanoparticle Labels in a Competitive Atrazine Fluoroimmunoassay on an ITO Wave- guide,” Biosensors and Bioelectronics, Vol. 21, No. 7, 2003, pp. 1077-1085.
[110] A. Klotz, A. Brecht, C. Barzen, G. Gauglitz, R. D. Harris, G. R. Quigley, J. S. Wilkinson and R. Abuknesha, “Im- munofluorescence Sensor for Water Analysis,” Sensors and Actuators B, Vol. 51, No. 1-3, 1998, pp. 181-187. doi:10.1016/S0925-4005(98)00187-7
[111] C. Barzen, A. Brecht and G. Gauglitz, “Optical Multiple- Analyte Immunosensor for Water Pollution Control,” Biosensors and Bioelectronics, Vol. 17, No. 4, 2002, pp. 289-295. doi:10.1016/S0956-5663(01)00297-4,
[112] F. Long, H. C. Shi, M. He and A. N. Zhu, “Sensitive and Rapid Detection of 2,4-Dicholorophenoxyacetic Acid in Water Samples by Using Evanescent Wave All-Fiber Im-munosensor,” Biosensors and Bioelectronics, Vol. 23, No. 9, 2008, pp. 1361-1366. doi:10.1016/j.bios.2007.12.004
[113] F. Long, M. He, H. C. Shi and A. N. Zhu, “Development of Evanescent Wave All-Fiber Immunosensor for Envi- ronmental Water Analysis,” Biosensors and Bioelectronics, Vol. 23, No. 7, 2008, pp. 952-958. doi:10.1016/j.bios.2007.09.013
[114] S. Rodriguez-Mozaz, M. L. de Alda and D. Barcelo, “Analysis of Bisphenol A in Natural Waters by Means of an Optical Immunosensor,” Water Research, Vol. 39, No. 20, 2005, pp. 5071-5079. doi:10.1016/j.watres.2005.09.023
[115] J. Tschmelak, N. Kappel and G. Gauglitz, “TIRF-Based Biosensor for Sensitive Detection of Progesterone in Milk Based on Ultra-Sensitive Progesterone Detection in Wa- ter,” Analytical and Bioanalytical Chemistry, Vol. 382, No. 8, 2005, pp. 1895-1903. doi:10.1007/s00216-005-3261-x
[116] J. Tschmelak, G. Proll, J. Riedt, J. Kaiser, P. Kraemmer, L. Barzaga, J. S. Wilkinson, P. Hua, J. P. Hole, R. Nudd, M. Jackson, R. Abuknesha, D. Barcelo, S. Rodriguez- Mozaz, M. J. de Alda, F. Sacher, J. Stien, J. Slobodnik, P. Oswald, H. Kozmenko, E. Korenkova, L. Tothova, Z. Krascsenits and G. Gauglitz, “Automated Water Analyser Computer Supported System (AWACSS) Part I: Project Objectives, Basic Technology, Immunoassay Development, Software Design and Networking,” Biosensors and Bioelectronics, Vol. 20,
[117] S. Boujday, S. Nasri, M. Salmain and C.-M. Pradier, “Surface IR Immunosensors for Label-Free Detection of Benzo[a]pyrene,” Biosensors and Bioelectronics, Vol. 26, No. 4, 2010, pp. 1750-1754.
[118] S. Boujday, C. Gu, M. Girardot, M. Salmain and C. M. Pradier, “Surface IR Applied to Rapid and Direct Im- munosensing of Environmental Pollutants,” Talanta, Vol. 78, No. 1, 2009, pp. 165-170. doi:10.1016/j.talanta.2008.10.064
[119] M. Salmain, N. Fischer-Durand and C. M. Pradier, “In- frared optical immunosensors: Application to the meas- urement of the herbicide atrazine,” Analytical Biochemis- try, Vol. 373, No. 1, 2008, pp. 61-70. doi:10.1016/j.ab.2007.10.031
[120] S. Kurosawa, J.-W. Park, H. Aiwaza, S.-I. Wakida, H. Tao and K. Ishihara, “Quartz Crystal Microbalance Im- munosensor for Environmental Monitoring,” Biosensors and Bioelectronics, Vol. 22, No. 4, 2006, pp. 473-481. doi:10.1016/j.bios.2006.06.030
[121] C. March, J. J. Manclus, Y. Jimenez, A. Arnau and A. Montoya, “A Piezoelectric Immunosensor for the Deter- mination of Pesticide Residues and Metabolites in Fruit Juices,” Talanta, Vol. 78, No. 3, 2009, pp. 827-833. doi:10.1016/j.talanta.2008.12.058
[122] A. Sassolas, B. D. Leca-Bouvier and L. J. Blum, “DNA Biosensors and Microarrays,” Chemical Reviews, Vol. 108, No. 1, 2008, pp. 109-139. doi:10.1021/cr0684467
[123] J. Kaur, K. V. Singh, A. H. Schmid, G. C. Varshney, C. R. Suri and M. Raje, “Atomic Force Spectroscopy-Based Study of Antibody Pesticide Interactions for Characteri- zation of Immunosensor Surface,” Biosensors and Bio-electronics, Vol. 20, No. 2, 2004, pp. 284-293. doi:10.1016/j.bios.2004.01.012
[124] C. R. Suri, J. Kaur, S. Gandhi and G. S. Shekhawat, “Label-free Ultra-Sensitive Detection of Atrazine Based on Nanomechanics,” Nanotechnology, Vol. 19, No. 23, 2008, p. 235502. doi:10.1088/0957-4484/19/23/235502
[125] M. Alvarez, A. Calle, J. Tamayo, L. Lechuga, A. Abad and A. Montoya, “Development of Nanomechanical Bio-sensors for Detection of the Pesticide DDT,” Biosensors and Bioelectronics, Vol. 18, No. 5-6, 2003, pp. 649-653. doi:10.1016/S0956-5663(03)00035-6
[126] M. Bache, R. Taboryski, S. Schmid, J. Aamand and M. H. Jakobsen, “Investigations on Antibody Binding to a Microcantilever Coated with a BAM Pesticide Residue,” Nanoscale Research Letters, Vol. 6, 2011, p. 386.
[127] A. M. Nowicka, A. Kowalczyk, Z. Stojek and M. Hepel, “Nanogravimetric and Voltammetric DNA-Hybridization Biosensors for Studies of DNA Damage by Common Toxicants and Pollutants,” Biophysical Chemistry, Vol. 146, No. 1, 2010, pp. 42-53. doi:10.1016/j.bpc.2009.10.003
[128] A. D. Ellington and J. W. Szostak, “In Vitro Selection of RNA Molecules that Bind Specific Ligands,” Nature, Vol. 346, No. 6287, 1990, pp. 818-822. doi:10.1038/346818a0
[129] C. L. A. Hamula, J. W. Guthrie, H. Zhang, X.-F. Li and X. C. Le, “Selection and Analytical Applications of Aptam- ers,” Trends in Analytical Chemistry, Vol. 30, No. 10, 2011, pp. 1587-1597. doi:10.1016/j.trac.2011.08.006
[130] R. Stoltenburg, C. Reinemann and B. Strehlitz, “SELEX- A(r)evolutionary Method to Generate High-Affinity Nucleic Acid Ligands,” Biomolecular Engineering, Vol. 24, No. 4, 2007, pp. 381-403. doi:10.1016/j.bioeng.2007.06.001
[131] A. Famulok and J. W. Szostak, “In Vitro Selection of Specific Ligand Binding Nucleic Acids,” Angewandte Chemie-International Edition, Vol. 31, No. 8, 1992, pp. 979- 988. doi:10.1002/anie.199209791
[132] S. D. Jayasena, “Aptamers: An Emerging Class of Molecules That Rival Antibodies in Diagnostics,” Clinical Chemistry, Vol. 45, No. 9, 1999, pp. 1628-1650.
[133] A. Sassolas, L. J. Blum and B. D. Leca-Bouvier, “Optical Detection Systems Using Immobilized Aptamers,” Bio- sensors and Bioelectronics, Vol. 26, No. 9, 2011, pp. 3725- 3736. doi:10.1016/j.bios.2011.02.031
[134] A. Sassolas, L. J. Blum and B. D. Leca-Bouvier, “Electro-chemical Aptasensors,” Electroanalysis, Vol. 21, 2009, pp. 1237-1250. doi:10.1002/elan.200804554
[135] T. Yuan, Z.-Y. Liu, L.-Z. Hu and G.-B. Xu, “Electro-chemical and Electrochemiluminescent Aptasensors,” Chi- nese Journal of Analytical Chemistry, Vol. 39, No. 7, 2011, pp. 972-977. doi:10.1016/S1872-2040(10)60451-3
[136] A.-E. Radi, “Electrochemical Aptamer-Based Biosensors: Recent Advances and Perspectives,” International Journal of Electrochemistry, 2011, Article ID 863196.
[137] Y. Xu, G. Cheng, P. He and Y. Fang, “A Review: Electrochemical Aptasensors with Various Detection Strategies,” Electroanalysis, Vol. 21, No. 11, 2009, pp. 1251- 1259. doi:10.1002/elan.200804561
[138] J. He, Y. Liu, M. Fan and X. Liu, “Isolation and Identification of the Dna Aptamer Target to Acetamiprid,” Journal of Agricultural and Food Chemistry, Vol. 59, No. 5, 2011, pp. 1582-1586. doi:10.1021/jf104189g
[139] A. L. Hillberg, K. R. Brain and C. J. Allender, “Molecular imprinted Polymer Sensors: Implications for Therapeutics,” Advanced Drug Delivery Reviews, Vol. 57, No. 12, 2005, pp. 1875-1889. doi:10.1016/j.addr.2005.07.016
[140] A. G. Mayes and M. J. Whitcombe, “Synthetic Strategies for the Generation of Molecularly Imprinted Organic Polymers,” Advanced Drug Delivery Reviews, Vol. 57, No. 12, 2005, pp. 1742-1778. doi:10.1016/j.addr.2005.07.011
[141] V. Pichon and F. Chapuis-Hugon, “Role of Molecularly Imprinted Polymers for Selective Determination of Environmental Pollutants—A Review,” Analytica Chimica Acta, Vol. 622, No. 1-2, 2008, pp. 48-61. doi:10.1016/j.aca.2008.05.057
[142] A. L. Jenkins, R. Yin and J. L. Jensen, “Molecularly Im-printed Polymer Sensors for Pesticide and Insecticide Detection in Water,” Analyst, Vol. 126, 2001, pp. 798- 802. doi:10.1039/b008853f
[143] C. Xie, S. Gao, Q. Guo and K. Xu, “Electrochemical Sensor for 2,4-Dichlorophenoxy Acetic Acid Using Molecu- larly Imprinted Polypyrrole Membrane as Recognition Element”, Microchimica Acta, Vol. 169, No. 1, 2010, pp. 145- 152. doi:10.1007/s00604-010-0303-7
[144] C. Pellicer, A. Gomez-Caballero, N. Unceta, M. A. Goi- colea and R. J. Barrio, “Using a Portable Device Based on Screen-Printed Sensor Modified with a Molecularly Im-printed Polymer for the Determination of the Insecticide Fenitrothion in Forest Samples,” Analytical Methods, Vol. 2, No. 9, 2010, pp. 1280-1285. doi:10.1039/c0ay00329h
[145] E. Pardieu, H. Cheap, C. Vedrine, M. Lazerges, Y. Lat- tach, F. Garnier, S. remira and C. Pernelle, “Molecularly Imprinted Conducting Polymer Based Electrochemical Sensor for Detection of Atrazine,” Analytica Chimica Acta, Vol. 649, No. 2, 2009, pp. 236-245. doi:10.1016/j.aca.2009.07.029
[146] M. Cortina-Puig, G. Istamboulie, T. Noguer and J. L. Marty, “Analysis of Pesticide Mixtures Using Intelligent Biosensors,” In: V. S. Somerset, Ed., Intelligent and Bio- sensors, 2010, pp. 205-216.
[147] G. Istamboulie, M. Cortina-Puig, J. L. Marty and T. No- guer, “The Use of Artificial Neural Networks for the Selective Detection of Two Organophosphate Insecticides: Chlorpyrifos and Chlorfenvinfos,” Talanta, Vol. 79, No. 2, 2009, pp. 507-511. doi:10.1016/j.talanta.2009.04.014
[148] X. Zhang, Q. Guo and D. Cui, “Recent Advances in Nanotechnology Applied to Biosensors,” Sensors, Vol. 9, No. 2, 2009, pp. 1033-1053. doi:10.3390/s90201033
[149] R. Singh, “Prospects of Nanobiomaterials for Biosensing,” International Journal of Electrochemistry, 2011, Article ID 125487.
[150] A. Ballesteros-Gomez and S. Rubio, “Recent Advances in Environmental Analysis,” Analytical Chemistry, Vol. 81, No. 12, 2009, pp. 4601-4622. doi:10.1021/ac200921j
[151] A. Sassolas, L. J. Blum and B. D. Leca-Bouvier, “Immo- bilization Strategies to Develop Enzymatic Biosensors,” Biotechnology Advances, in press, doi:10.1016/j.biotechadv.2011.09.003
[152] X.-H. Li, Z. Xie, H. Min, C. Li, M. Liu and Y. J. Xian, “Development of Quantum Dots Modified Acetylcholi- nesterase Biosensor for the Detection of Trichlorfon,” Elec- troanalysis, Vol. 18, No. 22, 2006, pp. 2163-2167. doi:10.1002/elan.200603615
[153] J. Pingarron, P. Yanez-Sedeno and A. Gonzalez-Cortes, “Gold Nanoparticles-Based Electrochemical Biosensors,” Electrochimica Acta, Vol. 53, No. 19, 2008, pp. 5848- 5866. doi:10.1016/j.electacta.2008.03.005
[154] D. Du, S. Chen, J. Cai and A. Zhang, “Electrochemical Pesticide Sensitivity Test Using Acetylcholinesterase Bio- sensor Based on Colloidal Gold Nanoparticle Modified Sol-Gel Interface,” Talanta, Vol. 74, No. 4, 2008, pp. 766-772. doi:10.1016/j.talanta.2007.07.014
[155] D. Du, S. Chen, D. Song, H. Li and X. Chen, “Develop- ment of Acetylcholinesterase Biosensor Based on CdTe Quantum Dots/Gold Nanoparticles Modified Chitosan Mi- crospheres Interface,” Biosensors and Bioelectronics, Vol. 24, No. 3, 2008, pp. 475-479. doi:10.1016/j.bios.2008.05.005
[156] P. Sharma, K. Sablok, V. Bhalla and C. R. Suri, “A Novel Disposable Electrochemical Immunosensor for Phenyl Urea Herbicide Diuron,” Biosensors and Bioelectronics, Vol. 26, No. 10, 2011, pp. 4209-4212. doi:10.1016/j.bios.2011.03.019
[157] T.-J. Lin, K.-T. Huang and C.-Y. Liu, “Determination of Organophosphorous Pesticides by a Novel Biosensor Based on Localized Surface Plasmon Resonance,” Biosensors and Bioelectronics, Vol. 22, No. 4, 2006, pp. 513-518. doi:10.1016/j.bios.2006.05.007
[158] X. Sun, B. Liu and K. Xia, “A Sensitive and Regenerable Biosensor for Organophosphate Pesticide Based on Self- Assembled Multilayer Film with CdTe as Fluorescence Probe,” Luminescence, Vol. 26, No. 6, 2011, pp. 616-621. doi:10.1002/bio.1284
[159] J. Fu, B. PArk and Y. Zhao, “Limitation of a Localized Surface Plasmon Resonance Sensor for Salmonella De- tection,” Sensors and Actuators B, Vol. 141, No. 1, 2009, pp. 276-283. doi:10.1016/j.snb.2009.06.020
[160] L.-K. Chau, Y.-F. Lin, S.-F. Cheng and T.-J. Lin, “Fi- ber-Optic Chemical and Biochemical Probes Based on Localized Surface Plasmon Resonance,” Sensors and Ac- tuators B, Vol. 113, No. 1, 2006, pp. 100-105. doi:10.1016/j.snb.2005.02.034
[161] J. Wang, “Carbon-Nanotube Based Electrochemical Bio- sensors: A Review,” Electroanalysis, Vol. 17, No. 1, 2005, pp. 7-14. doi:10.1002/elan.200403113
[162] D. Du, X. Huang, J. Cai and A. Zhang, “Comparison of Pesticide Sensitivity by Electrochemical Test Based on Acetylcholinesterase Biosensor,” Biosensors and Bioelec- tronics, Vol. 23, No. 2, 2007, pp. 285-289. doi:10.1016/j.bios.2007.05.002
[163] A. C. Oliveira and L. H. Mascaro, “Evaluation of Ace- tylcholinesterase Biosensor Based on Carbon Nanotube Paste in the Determination of Chlorphenvinphos,” Inter- national Journal of Analytical Chemistry, 2011, Article ID 974216. doi:10.1155/2011/974216
[164] S. Firdoz, F. Ma, X. Yue, Z. Dai, A. Kumar and B. Jiang, “A Novel Amperometric Biosensor Based on Single Walled Carbon Nanotubes with Acetylcholine Esterase for the Detection of Carbaryl Pestcide in Water,” Talanta, Vol. 83, No. 1, 2010, pp. 269-273. doi:10.1016/j.talanta.2010.09.028
[165] Y. Qu, Q. Sun, F. Xiao, G. Shi and L. Jin, “Layer- by-Layer Self-Assembled Acetylcholienesterase/ PAMAM- Au on CNTs Modified Elec-trode for Sensing Pesticides,” Bioelectrochemistry, Vol. 77, No. 2, 2010, pp. 139-144. doi:10.1016/j.bioelechem.2009.08.001
[166] S. Chen, J. Huang, D. Du, J. Li, H. Tu, D. Liu and A. Zhang, “Methyl Parathion Hydrolase Based Nanocompo- site Biosensors for Highly Sensitive and Selective De- termination of Methyl Parathion,” Biosensors and Bio- electronics, Vol. 26, No. 11, 2011, pp. 4320-4325. doi:10.1016/j.bios.2011.04.025
[167] J. L. Marty, B. Leca and T. Noguer, “Biosensors for the Detection of Pesticides,” Analusis Magazine, Vol. 26, 1998, pp. 144-149. doi:10.1051/analusis:199826060144
[168] M. Blanco-Lopez, “Electrochemical Sensors Ased on Molecularly Imprinted Polymers,” Trends in Analytical Chemistry, Vol. 23, No. 1, 2004, pp. 36-48. doi:10.1016/S0165-9936(04)00102-5
[169] S. A. Piletsky and A. P. F. Turner, “Electrochemical Sen- sors Based on Molecularly Imprinted Polymers,” Elec- troanalysis, Vol. 14, No. 5, 2002, pp. 317-323. doi:10.1002/1521-4109
[170] A. C. Ion, I. Ion, A. Culetu, D. Gherase, C. A. Moldovan, R. Iosub and A. Dinescu, “Acetylcholinesterase Voltam- metric Biosensors Based on Carbon Nanostructure-Chi- tosan Composite Material for Organophosphate Pesticides,” Materials Science and Engineering, Vol. 30, No. 6, 2010, pp. 817-821. doi:10.1016/j.msec.2010.03.017
[171] S. Viswanathan, H. Radecka and J. Radecki, “Electro- chemical Biosensor for Pesticides Based on Acetylcholi- nesterase Immobilized on Polyaniline Deposited on Ver- tically Assembled Carbon Nanotubes Wrapped with ss- DNA,” Biosensors and Bioelectronics, Vol. 24, No. 9, 2009, pp. 2772-2777. doi:10.1016/j.bios.2009.01.044
[172] N. Chauhan, J. Narang and C. S. Pundir, “Immobilization of Rat Brain Acetylcholinesterase on ZnS and Poly(In- dole-5-carboxylic acid) Modified Au Electrode for Detec- tion of Organophosphorus Insecticides,” Biosensors and Bioelectronics, Vol. 29, No. 1, 2011, pp. 82-88. doi:10.1016/j.bios.2011.07.070
[173] G. Istamboulie, T. Sikora, E. Jubete, E. Ochoteco, J. L. Marty and T. Noguer, “Screen-Printed Poly(3,4-Ethyl- enedioxythiophene) (PEDOT): A New Electrochemical Me- diator for Acetylcholi-nesterase-Based Biosensors,” Talanta, Vol. 82, No. 3, 2010, pp. 957-961. doi:10.1016/j.talanta.2010.05.070
[174] A. Hildebrandt, J. Ribas, R. Bragos, J. L. Marty, M. Tre- sanchez and S. Lacorte, “Development of a Portable Bio- sensor for Screening Neurotoxic Agents in Water Sam- ples,” Talanta, Vol. 75, No. 5, 2008, pp. 1208-1213. doi:10.1016/j.talanta.2008.01.033
[175] A. Hildebrandt, R. Bragos, S. Lacorte and J. L. Marty, “Performance of a Portable Biosensor for the Analysis of Organophosphorus and Carbamate Insecticides in Water and Food,” Sensors and Actuators B, Vol. 133, No. 1, 2010, pp. 195-201. doi:10.1016/j.snb.2008.02.017
[176] Y. Ivanov, I. Marinov, K. Gabrovska, N. Dimcheva and T. Godjevargova, “Amperometric Biosensor Based on a Site- Specific Immobilization of Acetylcholinesterase via Af- finity Bonds on a Nanostructured Polymer Membrane With Intergrated Multiwall Carbon Nanotubes,” Journal of Molecular Catalysis B: Enzymatic, Vol. 63, No. 3-4, 2010, pp. 141-148. doi:10.1016/j.molcatb.2010.01.005
[177] R. Sinha, M. Ganesana, S. Andreescu and L. Stanciu, “AChE Biosensor Based on Zinc Oxide Sol-Gel for the Detection of Pesticides,” Analytica Chimica Acta, Vol. 661, No. 2, 2010, pp. 195-199. doi:10.1016/j.aca.2009.12.020
[178] Y. Wang, S. Zhang, D. Du, Y. Shao, Z. Li, J. Wang, M. H. Englehard, J. Li and Y. H. Lin, “Self Assembly of Ace- tylcholinesterase on a Gold Nanoparticles-Graphene Nanosheet Hybrid for Organophosphate Pesticide Detec- tion Using Polyelectrolyte as a Linker,” Journal of Mate- rials Chemitsry, Vol. 21, No. 22, 2011, pp. 5319-5325.
[179] F. Arduini, F. Ricci, C. S. Tuta, D. Moscone, A. Amine and G. Palleschi, “Detection of Carbamic and Organo- phosphorous Pesticides in Water Samples Using a Choli- nesterase Biosensor Based on Prussian Blue-Modified Screen-Printed Electrode,” Analytica Chimica Acta, Vol. 580, No. 2, 2006, pp. 155-162. doi:10.1016/j.aca.2006.07.052
[180] G. Valdes-Ramirez, M. Cortina, M. T. Ramirez-Silva and J. L. Marty, “Acetylcholi-nesterase-Based Biosensors for Quantification of Carbofuran, Methylparaoxon, and Di- chlorvos In 5% Acetonitrile,” Analytical and Bioanalyti- cal Chemistry, Vol. 392, No. 4, 2008, pp. 699-707. doi:10.1007/s00216-008-2290-7
[181] D. Du, X. Huang, J. Cai and A. Zhang, “Amperometric Detection of Triazophos Pesticide Using Acetylcholi-nesterase Biosensor Based on Miltiwall Carbon Nano- tube-Chitosan Matrix,” Sensors and Actuators B, Vol. 127, No. 2, 2007, pp. 531-535. doi:10.1016/j.snb.2007.05.006
[182] A. Vakurov, C. E. Simpson, C. L. Daly, T. D. Gibson and P. A. Millner, “Acetylcholi-nesterase-Based Biosensor Elec- trodes for Organophosphate Pesticide Detection. I. Modi- fication of Carbon Surface for Immobilization of Acetyl- cholinesterase,” Biosensors and Bioelectronics, Vol. 20, No. 6, 2004, pp. 1118-1125. doi:10.1016/j.bios.2004.03.039
[183] S. Sotiropoulou, D. Fournier and N. A. Chaniotakis, “Ge- netically Engineered Acetylcholinesterase-Based Biosen- sor for Attomolar Detection of Dichlorvos,” Biosensors and Bioelectronics, Vol. 20, No. 11, 2005, pp. 2347-2352. doi:10.1016/j.bios.2004.08.026
[184] X. Sun and X. Wang, “Acetylcholinesterase Biosensor Based on Prussian Blue-Modified Electrode for Detecting Organophosphorous Pesticides,” Biosensors and Bioelec- tronics, Vol. 25, No. 1-2, 2010, pp. 2611-2614. doi:10.1016/j.bios.2010.04.028
[185] Y. Wei, Y. Li, Y. Qu, F. Xiao, G. Shi and L. Jin, “A Novel Biosensor Based on Photoelectro-Synergistic Ca- talysis for Flow-Injection Analysis System/Amperometric Detection of Organophosphorous Pes-ticides,” Analytica Chimica Acta, Vol. 643, No. 1-2, 2009, pp. 13-18. doi:10.1016/j.aca.2009.03.045
[186] D. Du, S. Chen, J. Cai and A. Zhang, “Immobilization of Acetylcholinesterase on Gold Nanoparticles Embedded in Sol-Gel Film for Amperometric Detection of Organo- phosphorous,” Biosensors and Bioelectronics, Vol. 23, No. 1, 2007, pp. 130-134. doi:10.1016/j.bios.2007.03.008
[187] A. Ishii, S. Takeda, S. Hattori, K. Sueoka and K. Mukasa, “Ultrasensitive Detection of Organophosphate Insecticides by Carbon Field-Effect Transistor,” Colloids and Sur- faces A, Vol. 313-314, 2008, pp. 456-460.
[188] N. Gan, X. Yang, D. Xie, Y. Wu and W. Wen, “A Dis- posable Organophosphorus Pesticides Enzyme Biosensor Based On Magnetic Nano-Particles Modified Screen Printed Carbon Electrode,” Sensors, Vol. 10, No. 1, 2010, pp. 665-638. doi:10.3390/s100100625
[189] D. Du, J. Ding, J. Cai and A. Zhang, “Determination of Carbaryl Pesticide Using Amperometric Acetylcholinesterase Sensor Formed by Electrochemically Deposited Chito- san,” Colloids and Surfaces B Biointerfaces, Vol. 58, No. 1, 2007, pp. 145-150. doi:10.1016/j.colsurfb.2007.03.006
[190] S. P. Zhang, L. G. Shan, Z. R. Tian, Y. Zheng, L. Y. Shi and D. S. Zhang, “Study of Enzyme Biosensor Based on Carbon Nanotubes Modified Electrode for Detection of Pesticides Residue,” Chinese Chemical Letters, Vol. 19, No. 5, 2008, pp. 592-594. doi:10.1016/j.cclet.2008.03.014
[191] Y. Qu, Q. Sun, F. Xiao, G. Shi and L. Jin, “Layer- by-Layer Self-Assembled Acetylcholi-nesterase/ PAMAM- Au on CNTs Modified Electrode for Sensing Pesticides,” Bioelectrochemistry, Vol. 77, No. 2, 2010, pp. 139-144. doi:10.1016/j.bioelechem.2009.08.001
[192] S. Laschi, D. Ogonczyk, I. Palchetti and M. Mascini, “Evaluation of Pesticide-Induced Acetylcholinesterase Inhibition by Means of Disposable Carbon-Modiifed Elec- trochemical Biosensors,” Enzyme and Microbial Tech- nology, Vol. 40, No. 3, 2007, pp. 485-489. doi:10.1016/j.enzmictec.2006.08.004
[193] S. Sajjadi, H. Ghourchian and H. Tavakoli, “Choline Oxidase as a Selective Recognition Element for Determi- nation of Paraoxon,” Biosensors and Bioelectronics, Vol. 24, No. 8, 2009, pp. 2509-2514. doi:10.1016/j.bios.2009.01.008
[194] R. P. Deo, J. Wang, I. Block, A. Mulchandani, K. A. Joshi, M. Trojanowicz, F. Scholz, W. Chen and Y. H. Lin, “Determination of Organophosphate Pesticides at a Car- bon Nanotube/Organophosphorus Hydrolase Electrochemi- cal biosensor,” Analytica Chimica Acta, Vol. 530, No. 2, 2005, pp. 185-189. doi:10.1016/j.aca.2004.09.072
[195] T. Laothanachareon, V. Champreda, P. Sritongkham, M. Somasundrum and W. Surareungchai, “Cross-Linked En- zyme Crystals of Organophosphate Hydrolase for Electro- chemical Detection of Organophosphorus Compounds,” World Journal of Microbiology and Biotechnology, Vol. 24, No. 12, 2008, pp. 3049-3055. doi:10.1007/s11274-008-9851-yOpen
[196] A. Mulchandani, S. T. Pan and W. Chen, “Fiber-Optic Enzyme Biosensor for Direct Determination of Organo- phosphate Nerve Agents,” Biotechnology Progress, Vol. 15, No. 1, 1999, pp. 130-134. doi:10.1021/bp980111q
[197] V. Sacks, I. Eshkenazi, T. Neufeld, C. Dosoretz and J. Rishpon, “Immobilized Parathion Hydrolase: An Am- perometric Sensor for Parathion,” Analytical Chemistry, Vol. 72, No. 9, 2000, pp. 2055-2058. doi:10.1021/ac9911488
[198] L. Viveros, S. Paliwal, D. McCrae, J. Wild and A. Simo- nian, “A Fluorescence-Based Biosensor for the Detection of Organophosphate Pesticides and Chemical Warfare Agents,” Sensors and Actuators B, Vol. 115, No. 1, 2006, pp. 150-157. doi:10.1016/j.snb.2005.08.032
[199] K. A. F?hnrich, M. Pacda and G. G. Guilbault, “Dipos- able Amperometric Immunosensor for the Detection of Polycyclic Aromatic Hydrocarbons (PAHs) Using Screen- Printed Electrodes,” Biosensors and Bioelectronics, Vol. 18, No. 1, 2003, pp. 73-82. doi:10.1016/S0956-5663(02)00112-4
[200] S.-Q. Hu, J.-W. Xie, Q.-H. Xu, K. T. Rong, G.-L. Shen and R.-Q. Yu, “A Label-Free Electrochemical Immunosen- sor Based on Gold Nanoparticles for Detection of Paraoxon,” Talanta, Vol. 61, No. 6, 2003, pp. 769-777. doi:10.1016/S0039-9140(03)00368-0
[201] E. Zacco, R. Galve, M. P. Marco, S. Alegret and M. I. Pividori, “Electrochemical Biosensing of Pesticide Resi- dues Based on Affinity Biocomposite Platforms,” Biosen- sors and Bioelectronics, Vol. 22, No. 8, 2007, pp. 1707- 1715. doi:10.1016/j.bios.2006.07.037
[202] D. Butler and G. G. Guilbault, “Disposable Amperomet- ric Immunosensor for the Detection of 17-β Estradiol Us- ing Screen-Printed Electrodes,” Sensors and Actuators B, Vol. 113, No. 2, 2006, pp. 692-699. doi:10.1016/j.snb.2005.07.019
[203] L. Chen, G. Zeng, Y. Zhang, L. Tang, D. Huang, C. Liu, Y. Pang and J. Luo, “Trace Detection of Pichloram Using an Electrochemical Immunosensor Based on 3D Au Nano- clusters,” Analytical Biochemistry, Vol. 407, No. 2, 2010, pp. 172-179. doi:10.1016/j.ab.2010.08.001
[204] Y. Zhang and H.-S. Zhuang, “Amperometric Immunosen- sor Based on Layer-by-Layer Assembly of Thiourea and Nano-Gold Particles on Gold Electrode for Determination of Naphthalene,” Chinese Journal of Analytical Chemis- try, Vol. 38, No. 2, 2010, pp. 153-157. doi:10.1016/S1872-2040(09)60021-9
[205] I. Navratilova and P. Skladal, “The Immunosensors for Measurement of 2,4-Dichlorophenoxyacetic Acid Based on Electrochemical Impedance Spectroscopy,” Bioelec- trochemistry, Vol. 62, No. 1, 2004, pp. 11-18. doi:10.1016/j.bioelechem.2003.10.004
[206] M. F. Gouzy, M. Kess and P. M. Kramer, “A SPR-Based Immunosensor for the Detection of Isoproturon,” Bio- sensors and Bioelectronics, Vol. 24, No. 6, 2009, pp. 1563-1568. doi:10.1016/j.bios.2008.08.005
[207] D. R. Shankaran, K. Matsumoto, K. Toko and N. Miura, “Development and Comparison of Two Immunoassays for the Detection of 2,4,6-Trinitrotoluene (TNT) Based on Surface Plasmon Resonance,” Sensors and Actuators B, Vol. 114, No. 1, 2006, pp. 71-79. doi:10.1016/j.snb.2005.04.013
[208] T. Kawaguchi, D. R. Shankaran, G. Y. Kim, K. Matsu- moto, K. Toko and N. Miura, “Surface Plasmon Reso- nance Au Nanoparticle for Detection of TNT,” Sensors and Actuators B, Vol. 133, No. 2, 2008, pp. 467-472. doi:10.1016/j.snb.2008.03.005
[209] T. Kawaguchi, D. R. Shankaran, S. J. Kim, K. V. Gobi, K. Matsumoto, K. Toko and N. Miura, “Fabrication of a Novel Immunosensor Using Functionalized Self-Assem- bled Monolayer for Trace Lavel Detection of TNT by Surface Plasmon Resonance,” Talanta, Vol. 72, No. 2, 2007, pp. 554-560. doi:10.1016/j.talanta.2006.11.020
[210] P. Singh, T. Onodera, Y. Mizuta, K. Matsumoto, N. Mi- ura and K. Toko, “Dendrimer Modified Biochip for De- tection of 2,4,6 Trinitrotoluene on SPR Immunosensor: Fabrication and Advantages,” Sensors and Actuators B, Vol. 137, No. 2, 2009, pp. 403-409. doi:10.1016/j.snb.2008.12.027
[211] K. Nagatomo, T. Kawaguchi, N. Miura, K. Toko and K. Matsumoto, “Development of a Sensitive Surface Plasmon Resonance Immunosensor for Detection of 2,4-Dini- trotoluene with a Novel Oligo (Ethylene Glycol)-Based Sensor Surface,” Talanta, Vol. 79, No. 4, 2009, pp. 1142- 1148. doi:10.1016/j.talanta.2009.02.018
[212] N. Soh, T. Tokuda, T. Watanabe, K. Mishima, T. Imato, T. Masadome, Y. Asano, S. Okutani, O. Niwa and S. Brown, “A Surface Plasmon Reso-nance Immunosensor for Detecting a Dioxin Precursor Using a Gold Binding Poly- peptide,” Talanta, Vol. 60, No. 4, 2003, pp. 733-745. doi:10.1016/S0039-9140(03)00139-5

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.