Comparative study of the mechanical behavior of the superior thoracic artery and abdominal arteries using the finite elements method


The human body has been the subject of thorough researches—not only from medical perspective but from a technical one as well—are very rich, amongst them we find blood circulation system comprising: the heart, the arteries and the veins. The overriding role of these researches is to explain some cardiovascular pathology and provide an aid tool for the endoprothesis positioning in blood vessels while treating them. In this study we have developed a digital pattern using the common (engineering technique of the) finite element method (FEM) to simulate the mechanical behavior of the thoracic aorta and the abdominal aorta below the kidney under blood pressure effect. This pattern calculates the displacements, the stresses (constraints) and the deformations of the two arteries’ walls enabling us to know their experimentally determined mechanical and geometric properties. This pattern could be applied to detect the aneurysm and dissection phenomena.

Share and Cite:

Salim, K. , Mahmoud, B. and Walid, B. (2012) Comparative study of the mechanical behavior of the superior thoracic artery and abdominal arteries using the finite elements method. Journal of Biomedical Science and Engineering, 5, 52-57. doi: 10.4236/jbise.2012.52008.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Asmar, R. (2007) Préssion artérielle régulation et épidémiologie, mesures et valeurs normales. Néphrologie & Thérapeutique, 21, 163-184. doi:10.1016/j.nephro.2007.03.008
[2] Roudant, R., Laurent, F. and Roques, X. (2002) Anévrisme de l’aorte thoracique. Edition Scientifiques et Médicales, 17, 11-500-A-10.
[3] Veyssier-Belot, C. (1998) Dissection aortique. La Revue de Médcine Interne, 4, 704-708. doi:10.1016/S0248-8663(98)80704-2
[4] Wang, X., Wache, P., Navibakhsh, M., Lucius, M. and Stoltz, J.F. (1999) Simulation numérique tridimensionnelle de l’écoulement sanguin dans un anévrisme. Mécanique Industrielle et Matériaux, 3, 71-74.
[5] Carli, F. and Martelli, M. (1999) Mechanical model of net reinforced blood vessel. Advances in Engineering Software, 9, 673-681. doi:10.1016/j.jbiomech.2003.09.007
[6] Wang, J.J. and Parker, K.H. (2004) Wave propagation in a model of the arterial circulation. Journal of Biomechanics, 13, 457-470. doi:10.1016/j.jbiomech.2003.09.007
[7] Leslie, P., Gartner, J. and Hiatt, L. (1997) Atlas en couleur d’histologie. Pradel, Paris.
[8] Zienkiewicz, O.C. (2005) The finit element method for solid and structural mechanics. Elsevier Butterworth-Heinemann, Maryland Heights.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.