Optimisation of accelerated solvent extraction for screening of the health benefits of plant food materials


The development of a rapid, robust and reliable method for extracting plant food materials is important for screening a wide range of plant bioactives for their health benefits. In this study, extractions of bioactive polyphenolic com-pounds from fruits and vegetables were per-formed using a pressurised solvent extraction technique. Variables including solvent, extrac-tion temperature and time, and number of ex-traction cycles, were optimised to develop a rapid and efficient extraction protocol. The re-sulting extracts were then analysed for antioxi-dant capacity, total phenolic content and com-position. The optimal parameters found were 19:1 methanol/water (95% methanol) as solvent and three extraction cycles, of 10 minutes at 40ºC or 2 minutes at 100ºC. High performance liquid chromatography mass spectrometry did not detect any difference in extract composition between low and high temperatures. Extraction at 100°C generally gave a moderately higher yield of polyphenolics for some fruit and vege-table extracts but appeared to reduce the anti-oxidant activity particularly for turnip leaf, el-derberry and sour cherry extracts as measured by oxygen radical absorbance capacity assay. We found that all 40°C extracts were better at protecting cells from H2O2-induced cellular damage than their 100°C counterparts. The 40°C apple puree and elderberry extracts were about 2 fold and 1.7 fold more effective, respectively, than extracts prepared at 100°C. Our results demonstrated that pressurised solvent extrac-tion technique with careful parameter selection can be used as a quick method for screening the health benefits of plant food materials.

Share and Cite:

Wibisono, R. , Zhang, J. , Saleh, Z. , E. Stevenson, D. and I. Joyce, N. (2009) Optimisation of accelerated solvent extraction for screening of the health benefits of plant food materials. Health, 1, 220-230. doi: 10.4236/health.2009.13037.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] M. N. Diaz, B. Frei, J. A. Vita, J. F. Keaney, (1997) Mecha-nisms of disease: Antioxidants and atherosclerotic heart disease. New Engl J Med, 337, 408-416.
[2] Y. Christen, (2000) Oxidative stress and Alzheimer dis-ease. Am J Clin Nutr., 71, 621s-629.
[3] B. N. Ames, L. S. Gold, W. C. Willett, (1995) The causes and prevention of cancer. Proc Natl Acad Sci USA., 92, 5258-65, 0027-8424 (Print).
[4] S. Kuntz, U. Wenzel, H. Daniel, (1999) Comparative analysis of the effects of flavonoids on prolifertion, cyto-toxicty and apoptosis in human colon cancer cell lines. Eur J Nutr, 38, 133-142.
[5] C. Bosetti, L. Spertini, M. Parpinel, P. Gnagnarella, P. Lagiou, E. Negri, S. Franceschi, M. Montella, J. Peterson, J. Dwyer, A. Giacosa, C. La Vecchia, (2005) Flavonoids and breast cancer risk in Italy. Cancer Epidemiol Bio-markers Pre, 14, 805-808, 1055-9965.
[6] M. Rossi, E. Negri, R. Talamini, C. Bosetti, M. Parpinel, P. Gnagnarella, S. Franceschi, L. Dal Maso, M. Montella, A. Giacosa, C. La Vecchia, (2006) Flavonoids and colorectal cancer in Italy. Cancer Epidemiol Biomarkers Prev, 15, 1555-1558, 1055-9965.
[7] A. Tavani, L. Spertini, C. Bosetti, M. Parpinel, P. Gnag-narella, F. Bravi, J. Peterson, J. Dwyer, P. Lagiou, E. Negri, C. La Vecchia, (2006) Intake of specific flavonoids and risk of acute myocardial infarction in Italy. Public Health Nutr, 9, 369-374, 1368-9800.
[8] R. Feng, H. M. Ni, S. Y. Wang, I. L. Tourkova, M. R. Shulin, H. Harada, X. M. Yin, (2007) Cyanidin- 3-ruti-noside, a natural polyphenol antioxidant, selectively kills leukemic cells by induction of oxidative stress. J Biol Chem, 282, 13468-13476.
[9] D. A. Pearson, C. H. Tan, J. B. German, P. A. Davis, M. E. Gershwin, (1999) Apple juice inhibits human low density lipoprotein oxidation. Life Sci, 64, 1913-1920.
[10] R, M. Alonso-Salces, A. Barranco, E. Corta, L. A. Berrueta, B. Gallo, F. Vicente, (2005) A validated solid-liquid extrac-tion method for the HPLC determination of polyphenols in apple tissues - Comparison with pressurised liquid extrac-tion. Talanta, 65, 654-662.
[11] B. E. Richter, B. A.Jones, J. L. Ezzell, N. L. Porter, N. Avdalovic, C. Pohl, (1996) Accelerated solvent extraction: A technique for sample preparation. Ann Chem, 68, 1033-1039.
[12] G. T. L. Spigno, D. M. De Faveri, (2007) Effects of ex-traction time, temperature and solvent on concentration and antioxidant activity of grape marc phenolics. J Food Eng, 81, 200-208.
[13] R. M. K. E. Alonso-Salces, A. Barranco, L. A. Berrueta, B. Gallo, F. Vicente, (2001) Determination of polyphenolic profiles of basque cider apple varieties using accelerated solvent extraction. J Agric Food Chem, 49, 3761-3766.
[14] X. Wu, G.. R. Beecher, J. M. Holden, D. B. Haytowitz, S. E. Gebhardt, R. L. Prior, (2004) Lipophilic and hydrophilic anti-oxidant capacities of common foods in the United States. J Agric Food Chem, 52, 4026-4037.
[15] X. Wu, G. R. Beecher, J. M. Holden, D. B. Haytowitz, S. E. Gebhardt, R. L. Prior, (2004) Development of database for to-tal antioxidant capacity in foods: A preliminary study. J Food Comp Anal, 17, 407-422.
[16] V. L. Singleton, R. Orthofer, R. M. Lamuela-Raventos, (1999) Analysis of total phenols and other oxidation sub-strates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol., 299, 152-178.
[17] N. Deighton, R. Brennan, C. Finn, H. V. Davies, (2000) Antioxidant properties of domesticated and wild rubus species. J Sci Food Agric, 80, 1307-1313.
[18] C. Walton, R. Lentle, G. Reynolds, M. Krugger, T. McGhie, (2006) Anthocyanin absorption and antioxidant status in pigs. J Agric Food Chem, 54, 7940-7946.
[19] J. Zhang, L. Melton, A. Adaim, M. Skinner, (2008) Cy-toprotective effects of polyphenolics on H2O2-induced cell death in SH-SY5Y cells in relation to their antioxidant activities. Eur Food Res Technol, 228, 123-131.
[20] J. Zhang, R. A. Stanley, A. Adaim, D. L. Melton, A. M. Skin-ner, (2006) Free radical scavenging and cytoprotective activi-ties of phenolic antioxidants. Mol Nutr Food Res, 50, 996- 1005.
[21] N. Fabre, I. Rustan, E. de Hoffman, J. Quetin-Leclercq, (2001) Determination of flavone, flavonol and flavanone aglycones by negative ion liquid chromatography elec-trospray ion trap mass spectrometry. J Am Soc Mass Spectrom, 12, 707-715.
[22] M. M. Giusti, L. E. Rodriguez-Saona, D. Griffin, R. E. Wrolstad, (1999) Electrospray and tandem mass spec-troscopy as tools for anthocyanin characterization. J Agric Food Chem, 47, 4657-4664.
[23] J. F. Sudjaroen, R. Haubner, G. Wurtele, W. E. Hull, G. Erben, B. Spiegelhalder, S. Changbumrung, H. Bartsch, R. W. Owen, (2005) Isolation and structure elucidation of phenolic antioxidants from tammarind (Tamarindus indica L.) seeds and pericarp. Food Chem Toxicol, 43, 1673- 1682.
[24] F. Sanchez-Rabaneda, O. Jauregui, R. M. Lamuela- Raventoz, F. Viladomat, J. Bastida, C. Codina, (2004) Qualitative analysis of phenolic compounds in apple po-mace using liquid chromatographycoupled to mass spec-trometry in tandem mode. Rapid Comm Mass Spectrom, 18, 553-563.
[25] F. Vallejo, F. A. Tomas-Barberran, F. Ferreres, (2004) Characterization of flavonols in broccoli (Brassica ol-eracea L. var. italica) by liquid chromatography-UV diode array detection-electrospray by ionisation mass spectro-photometry. J Chromatogr A, 2006, 148-155.
[26] Z. Huang, B. Wang, D. H. Eaves, J. M. Shikany, R. D. Pace, Phenolic compound profile of selected vegetables frequently consumed by African Americns in the south-east United States. Food Chem 2007, 103, 1395-1402.
[27] M. N. Clifford, K. L. Johnston, S. Knight, N. Kuhnert, (2003) Hierarchical scheme for LCMSn identifications of chlorogenic acids. J Agric Food Chem, 51, 2900-2911.
[28] L. Gu, M. A. Kelm, J. F. Hammerstone, Z. Zhang, G. R. Beecher, J. M. Holden, D. B. Haytowitz, R. L. Prior, (2003) Liquid chromatographic/electrospray ionization mass spectrophotmetric studies of proanthocyanidins in foods. J Mass Spectrom, 38, 1272-1280.
[29] A. Romani, P. Vignolini, L. Isolani, F. Leri, D. Heimler, (2006) HPLC-DAD/MS characterization of flavonoids and hydroxycinnamic derivatives in turnip tops (Brassica rapa L. subsp.sylvestris L.). J Agric Food Chem, 54, 1342-1346.
[30] Y. S. Liang, H. K. Kim, A. W. M. Lefeber, C. Erkelens, Y. M. Choi, R. Verpoorte, (2006) Identifications of phenyl-propanoids in methyl jasmonate treated Brassica rapa leaves using two dimensional nuclear magnetic resonance spectroscopy. J Chromatogr A, 1112, 148-155.
[31] F. Fernandes, P. Valentao, C. Sousa, J. A. Pereira, R. M. Seabra, P. B. Andrade, (2007) Chemical and antioxidative assessment of dietary turnip (Brassica rapa var. rapa L.). Food Chem, 105, 1003-1010.
[32] M. Piraud, C. Vianey-Saban, K. Petritis, C. Elfakir, J. P. Steghens, A. Morla, D. Bouchu, (2003) ESI-MS/MS analy-sis of underivatised amino acids: A new tool for the diag-nosis of inherited disorders of amino acid metabolism. Fragmentation study of 79 molecules of biological interest in positive and negative mode. Rapid Comm Mass Spec-trom, 17, 1297-1311.
[33] P. E. Milbury, G. Cao, R. L. Prior, J. Blumberg, (2002) Bioavailablility of elderberry anthocyanins. Mech Ageing Dev, 123, 997-1006.
[34] P. Kroon, G. Williamson, (2005) Polyphenols: Dietary components with established benefits to health? J Sci Food Agric, 85, 1239-1240.

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.