Effect of Heat Extraction by Metal Lines and Two Sided Cooling on Temperatures in Organic Light Emitting Diode Based Devices
Deepak ., Gokaran Nath Shukla
.
DOI: 10.4236/jectc.2011.13004   PDF    HTML     5,779 Downloads   10,315 Views   Citations

Abstract

Only a 10 K rise in temperature of organic light emitting diode (OLED) can lower its lifetime by more than 50% and cause other performance deterioration. We have performed two dimensional heat transport analysis and calculated temperatures in an OLED panel. The panel temperatures can easily rise in excess of 10 K. Further we have investigated loss of heat through the metal lines for the extent by which they could lower the temperature. However, this method leads to gradients in temperature which could in turn cause inhomogeneities in a display. But, in lighting panels, it will be feasible to cool the devices from both the sides, which is shown to have a significant impact. The thermal transport model presented here for displays is more extensive in its approach and hence likely to provide more accurate results.

Share and Cite:

., D. and Shukla, G. (2011) Effect of Heat Extraction by Metal Lines and Two Sided Cooling on Temperatures in Organic Light Emitting Diode Based Devices. Journal of Electronics Cooling and Thermal Control, 1, 29-37. doi: 10.4236/jectc.2011.13004.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] H. Aziz and Z. D. Popovic, “Degradation Phenomena in Small-Molecule Organic Light-Emitting Devices,” Chemis- try of Materials, Vol. 16, No. 23, 2004, pp. 4522-4532. doi:10.1021/cm040081o
[2] C. G?rditz, A. Winnacker, F. Schindler and R. Paetzold, “Impact of Joule Heating on the Brightness Homogeneity of Organic Light Emitting Devices,” Applied Physics Letter, Vol. 90, No.10, 2007, pp. 103506-103508. doi:10.1063/1.2711708
[3] E. Kolla?r, I. Zo?lomy, and A. Poppe, “Electro-Thermal Modeling of Large-Surface OLED,” Symposium on De- sign, Test, Integration and Packaging of MEMS/ MOEMS (DTIP’2009), Rome, 1-3 April 2009, p. 239.
[4] A. Poppe, L. Pohl, E. Kollar, Z. Kohari, H. Lifaka and C. Tanase, Semiconductor Thermal Measurement and Man- agement Symposium, 25th IEEE SEMI-THERM, 15-19 March 2009, p. 38.
[5] M. H. M. Lu, M. Hack, R. Hewitt, M. S. Weaver and J. J. Brown, “Power Consumption and Temperature Increase in Large Area Active-Matrix OLED Displays,” Journal of display technology, Vol. 4, No. 1, 2008, pp. 47-53. doi:10.1109/JDT.2007.900924
[6] J. C. Sturm, W. Wilson, and M. Iodice, “Thermal Effects and Scaling in Organic Light-Emitting Flat-Panel Displays,” IEEE Journal of Selected Topic in Quantum Electronics, Vol. 4, No. 1, 1998, pp. 75-82. doi:10.1109/2944.669471
[7] X. Zhou, J. He, L. S. Liao, M. Lu, X. M. Ding, X. Y. Hou, X. M. Zhang, X. Q. He and S. T. Lee, “Real-Time Observation of Temperature Rise and Thermal Breakdown Processes in Organic LEDs Using an IR Imaging and Analysis System,” Advanced Materials, Vol. 12, No. 4, 2000, 265-269. doi:10.1002/(SICI)1521-4095(200002)12:4<265::AID-ADMA265>3.0.CO;2-L
[8] S. Chung, J. H. Lee, J. Jeong, J. J. Kim and Y. Hong, “Substrate Thermal Conductivity Effect on Heat Dissipa- tion and Lifetime Improvement of Organic Light-Emit- ting Diodes,” Applied Physics Letter, Vol. 94, No. 25, 2009, pp. 253302-253305. doi:10.1063/1.3154557
[9] N. Stojanovic, J. Yun, E. B. K. Washington, J. M. Berg, M. W. Holtz and H. Temkin, “Thin-Film Thermal Con- ductivity Measurement Using Microelectrothermal Test Structures and Finite-Element-Model-Based Data Analy- sis,” Journal of Microelctromechanical System, Vol. 16, No. 5, 2007, pp. 1269-1275. doi:10.1109/JMEMS.2007.900877
[10] T. E. Hartman, “Density of Thin Evaporated Aluminum Films,” Journal of Vacuum Science and Technology, Vol. 2, No. 5, 1965, pp. 239-242. doi:10.1116/1.1492434
[11] R. L. Greene, C. N. King, R. B. Zubeck and J. J. Hauser, “Specific Heat of Granular Aluminium Films,” Physical Review B, Vol. 4, No. 6, 1972, pp. 3297-3305. doi:10.1103/PhysRevB.6.3297
[12] T. Ashida, A. Miyamura, N. Oka, Y. Sato, T. Yagi, N. Taketoshi, T. Baba and Y. Shigesato, “Thermal Transport Properties of Polycrystalline Tin-Doped Indium Oxide Films,” Journal of Applied Physics, Vol. 105, No. 7, 2009, pp. 073709-073713. doi:10.1063/1.3093684
[13] H. C. Chien, D. J. Yao and C. T. Hsu, “Measurement and Evaluation of the Interfacial Thermal Resistance between a Metal and a Dielectric,” Applied Physics Letter, Vol. 93, No. 23, 2008, pp. 231910-231913. doi:10.1063/1.3039806
[14] G. P. Zhigal’skii and A. S. Fedorov, “Effect of Formation and Geometric Factor on Flicker Noise in Chromium Films,” Izvestiya Vysshikh Uchebnykh Zavedenii Radiofizika, Vol. 28, No. 9, 1985, pp. 1192-1200.
[15] T. Coquil, C. M. Lew, Y. Yan and L. Pilon, “Thermal Conductivity of Pure Silica MEL and MFI Zeolite Thin Films,” Journal of Applied Physics, Vol. 108, No. 4, 2010, pp. 044902-044907. doi:10.1063/1.3462500
[16] J. H. Simmons, “Refractive Index and Density Changes in a Phase-Separated Borosilicate Glass,” Journal of Non- Crystalline Solids, Vol. 24, No. 1, 1977, pp. 77-88. doi:10.1016/0022-3093(77)90063-1
[17] W. Schnelle, J. Engelhardt and E. Gmelin, “Specific Heat Capacity of Apiezon N High Vacuum Grease and of Duran Borosilicate Glass,” Cryogenics, Vol. 39, No. 3, 1999, pp. 271-275. doi:10.1016/S0011-2275(99)00035-1
[18] M. W. Shin, H. C. Lee, K. S. Kim, S.H. Lee and J. C. Kim, “Thermal Analysis of Tris (8-Hydroxyquinoline) Aluminium,” Thin Solid Films, Vol. 363, No.1-2, 2000, pp. 244-247. doi:10.1016/S0040-6090(99)01067-6
[19] R. Kato, A. Maesono and R. P. Tye, “Thermal Conductivity Measurement of Submicron-Thick Films Deposited on Substrates by Modified ac Calorimetry (Laser-Heating Angstrom Method),” International Journal of Thermophysics, Vol. 22, No. 2, 2001, pp. 617-629. doi:10.1023/A:1010745603645
[20] W. S. Williams, “The Thermal Conductivity of Metallic Ceramics,” JOM Journal of Minerals, Metals and Mate- rial Society, Vol. 50, No. 6, 1998, pp. 62-66. doi:10.1007/s11837-998-0131-y
[21] G. K. Bama, P. I. Devi and K. Ramachandran, “Structural and Thermal Properties of PVDF/PVA Blends,” Journal of Material Science, Vol. 44, No. 5, 2009, pp. 1302-1307. doi:10.1007/s10853-009-3271-8
[22] F. Tian, L. Sun, J. E. S. Venart and R. C. Prasad, “Ther- mal Conductivity and Thermal Diffusivity of Poly(Acrylic Acid) by Transient Hot Wire Technique Absolute Meas- urement,” Journal of Thermal Analysis and Calorimetry, Vol. 96, No. 1, 2009, pp. 67-71. doi:10.1007/s10973-008-9840-2
[23] K. Kitamura and A. Mitsuishi, “Fluid Flow and Heat Transfer of mixed Convection over Heated Horizontal Plate Placed in Vertical Downward Flow,” International Journal of Heat and Mass Transfer, Vol. 53, No. 11-12, 2010, pp. 2327-2336. doi:10.1016/j.ijheatmasstransfer.2010.02.010
[24] J. H. Lienhard IV and J. H. Lienhard V, “A Heat Transfer Textbook,” 3rd Edition, Phlogiston Press, Cambridge, p. 307.
[25] H. Aziz, Z. D. Popovic and N. X. Hu, “Organic Light Emitting Devices with Enhanced Operational Stability at Elevated Temperatures,” Applied Physics Letter, Vol. 81, No. 2, 2002, pp. 370-372. doi:10.1063/1.1491002
[26] J. R. Sheats, H. Antoniadis, M. Hueschen, W. Leonard, J. Miller, R. Moon, D. Roitman and A. Stocking, “Organic Electroluminescent Devices,” Science, Vol. 273, No. 5277, 1996, pp. 884-888. doi:10.1126/science.273.5277.884

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.